Optimization‐free superoscillatory lens using phase and amplitude masks

A superoscillatory focusing lens has been experimen- tally demonstrated by optimizing Fresnel zone plates (FZP), with limited physical insight as to how the lens feature contributes to the focal formation. It is therefore imperative to establish a generalized viable account for both FZP (amplitude mask) and binary optics (phase mask). Arbitrary superoscillatory spots can now be customized and realized by a realistic optical device, without using optimization. It is counterintuitively found that high spatial frequency with small amplitude and destructive interfer- ence are favorable in superfocusing of a superoscillation pat- tern. The inevitably high sidelobe is pushed 15λ away from the central subwavelength spot, resulting in significantly enlarged field of view for viable imaging applications. This work therefore not only reveals the explicit physical role of any given metallic/

[1]  G. Binnig,et al.  Tunneling through a controllable vacuum gap , 1982 .

[2]  G. Toraldo di Francia,et al.  Super-gain antennas and optical resolving power , 1952 .

[3]  Andrew G. Glen,et al.  APPL , 2001 .

[4]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[5]  Mark R. Dennis,et al.  Natural superoscillations in monochromatic waves in D dimensions , 2009 .

[6]  G Leuchs,et al.  Sharper focus for a radially polarized light beam. , 2003, Physical review letters.

[7]  Xue-liang Kang,et al.  Design of DOE for generating a needle of a strong longitudinally polarized field. , 2010, Optics letters.

[8]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[9]  E. Ash,et al.  Super-resolution Aperture Scanning Microscope , 1972, Nature.

[10]  P. Debye,et al.  Der Lichtdruck auf Kugeln von beliebigem Material , 2014 .

[11]  Mark R. Dennis,et al.  Superoscillation in speckle patterns. , 2008, Optics letters.

[12]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[13]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[14]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[15]  N. Zheludev,et al.  Nanohole array as a lens. , 2008, Nano letters.

[16]  C. Lu,et al.  Interference lithography: a powerful tool for fabricating periodic structures , 2010 .

[17]  Luping Shi,et al.  Creation of a needle of longitudinally polarized light in vacuum using binary optics , 2008 .

[18]  M. Segev,et al.  Experimental generation of arbitrarily shaped diffractionless superoscillatory optical beams. , 2013, Optics express.

[19]  Q. Zhan Cylindrical vector beams: from mathematical concepts to applications , 2009 .

[20]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[21]  Sandu Popescu,et al.  Evolution of quantum superoscillations, and optical superresolution without evanescent waves , 2006 .

[22]  Nikolay I Zheludev,et al.  Super-resolution without evanescent waves. , 2008, Nano letters.

[23]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[24]  D. Psaltis,et al.  Superoscillatory diffraction-free beams , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[25]  Craig B. Arnold,et al.  Bessel and annular beams for materials processing , 2012 .

[26]  Mark R. Dennis,et al.  A super-oscillatory lens optical microscope for subwavelength imaging. , 2012, Nature materials.

[27]  S. L. Teo,et al.  High aspect subdiffraction-limit photolithography via a silver superlens. , 2012, Nano letters.

[28]  Achim Kempf,et al.  Unusual properties of superoscillating particles , 2004 .

[29]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[30]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[31]  Nikolay Zheludev,et al.  Focusing of light by a nanohole array , 2007 .

[32]  Mingsheng Zhang,et al.  High Contrast Superlens Lithography Engineered by Loss Reduction , 2012 .

[33]  Colin J. R. Sheppard,et al.  Fighting against diffraction: apodization and near field diffraction structures , 2012 .

[34]  E. H. Linfoot Principles of Optics , 1961 .

[35]  P.J.S.G. Ferreira,et al.  Superoscillations: Faster Than the Nyquist Rate , 2006, IEEE Transactions on Signal Processing.

[36]  Michael V Berry,et al.  Exact nonparaxial transmission of subwavelength detail using superoscillations , 2013 .

[37]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[38]  M. Gu,et al.  Advanced Optical Imaging Theory , 1999 .