Simulation and quasilinear theory of proton firehose instability

The electromagnetic proton firehose instability is driven by excessive parallel temperature anisotropy, T∥ > T⊥ (or more precisely, parallel pressure anisotropy, P∥ > P⊥) in high-beta plasmas. Together with kinetic instabilities driven by excessive perpendicular temperature anisotropy, namely, electromagnetic proton cyclotron and mirror instabilities, its role in providing the upper limit for the temperature anisotropy in the solar wind is well-known. A recent Letter [Seough et al., Phys. Rev. Lett. 110, 071103 (2013)] employed quasilinear kinetic theory for these instabilities to explain the observed temperature anisotropy upper bound in the solar wind. However, the validity of quasilinear approach has not been rigorously tested until recently. In a recent paper [Seough et al., Phys. Plasmas 21, 062118 (2014)], a comparative study is carried out for the first time in which quasilinear theory of proton cyclotron instability is tested against results obtained from the particle-in-cell simulation method, an...

[1]  R. Schlickeiser,et al.  On the marginal instability threshold condition of the aperiodic ordinary mode , 2014 .

[2]  P. Yoon,et al.  Quasilinear theory and particle-in-cell simulation of proton cyclotron instability , 2014 .

[3]  A. Qamar,et al.  On the ordinary mode instability for low beta plasmas , 2014 .

[4]  R. Schlickeiser,et al.  Solar wind kinetic instabilities at small plasma betas , 2014 .

[5]  M. J. Michno,et al.  EFFECTS OF ELECTRONS ON THE SOLAR WIND PROTON TEMPERATURE ANISOTROPY , 2014 .

[6]  P. Hellinger,et al.  Oblique electron fire hose instability: Particle‐in‐cell simulations , 2014 .

[7]  S. Poedts,et al.  The Electron Firehose and Ordinary-Mode Instabilities in Space Plasmas , 2013, 1307.0768.

[8]  M. Velli,et al.  Signatures of kinetic instabilities in the solar wind , 2013 .

[9]  Khan‐Hyuk Kim,et al.  Solar-wind proton anisotropy versus beta relation. , 2013, Physical review letters.

[10]  R. Schlickeiser,et al.  Towards a complete parametrization of the ordinary-mode electromagnetic instability in counterstreaming plasmas. I. Minimizing ion dynamics , 2013 .

[11]  Petr Hellinger,et al.  Ion Kinetics in the Solar Wind: Coupling Global Expansion to Local Microphysics , 2012 .

[12]  E. Marsch Helios: Evolution of Distribution Functions 0.3–1 AU , 2012 .

[13]  E. Marsch,et al.  Interactions of Alfvén-Cyclotron Waves with Ions in the Solar Wind , 2012 .

[14]  P. Yoon,et al.  Quasilinear theory of anisotropy‐beta relations for proton cyclotron and parallel firehose instabilities , 2012 .

[15]  P. Yoon,et al.  Quasilinear theory of anisotropy-beta relation for combined mirror and proton cyclotron instabilities , 2012 .

[16]  R. Schlickeiser,et al.  On the existence of Weibel instability in a magnetized plasma. II. Perpendicular wave propagation: The ordinary mode , 2012 .

[17]  J. Kasper,et al.  INSTABILITY-DRIVEN LIMITS ON HELIUM TEMPERATURE ANISOTROPY IN THE SOLAR WIND: OBSERVATIONS AND LINEAR VLASOV ANALYSIS , 2012 .

[18]  S. Bale,et al.  What are the relative roles of heating and cooling in generating solar wind temperature anisotropies? , 2011, Physical review letters.

[19]  E. Marsch,et al.  Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited , 2011 .

[20]  E. Marsch,et al.  Apparent temperature anisotropies due to wave activity in the solar wind , 2011, 1106.5878.

[21]  R. Schlickeiser,et al.  LINEAR THEORY OF WEAKLY AMPLIFIED, PARALLEL PROPAGATING, TRANSVERSE TEMPERATURE-ANISOTROPY INSTABILITIES IN MAGNETIZED THERMAL PLASMAS , 2010, 1002.3523.

[22]  E. Quataert,et al.  Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. , 2009, Physical review letters.

[23]  P. Yoon,et al.  Kinetic theory for low-frequency turbulence in magnetized plasmas including discrete-particle effects , 2008 .

[24]  P. Hellinger,et al.  Oblique proton fire hose instability in the expanding solar wind: Hybrid simulations: FIRE HOSE , 2008 .

[25]  P. Yoon Kinetic theory of hydromagnetic turbulence. I. Formal results for parallel propagation , 2007 .

[26]  P. Yoon,et al.  Kinetic theory of hydromagnetic turbulence. II. Susceptibilities , 2007 .

[27]  M. Velli,et al.  Parallel proton fire hose instability in the expanding solar wind: Hybrid simulations , 2006 .

[28]  A. Lazarus,et al.  Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations , 2006 .

[29]  S. Gary,et al.  Resonant electron firehose instability: Particle-in-cell simulations , 2003 .

[30]  P. Hellinger,et al.  Hybrid simulations of the expanding solar wind: Temperatures and drift velocities , 2003 .

[31]  H. Matsumoto,et al.  Nonlinear competition between the whistler and Alfvén fire hoses , 2001 .

[32]  S. Habbal,et al.  Electron kinetic firehose instability , 2000 .

[33]  H. Matsumoto,et al.  New kinetic instability: Oblique Alfvén fire hose , 2000 .

[34]  Dan Winske,et al.  Proton resonant firehose instability: Temperature anisotropy and fluctuating field constraints , 1998 .

[35]  K. Quest,et al.  Evolution of the fire‐hose instability: Linear theory and wave‐wave coupling , 1996 .

[36]  C. Wu,et al.  Effect of finite ion gyroradius on the fire‐hose instability in a high beta plasma , 1993 .

[37]  S. Peter Gary,et al.  Proton temperature anisotropy instabilities in the solar wind , 1976 .

[38]  R. Davidson,et al.  ORDINARY-MODE ELECTROMAGNETIC INSTABILITY IN HIGH-$beta$ PLASMAS. , 1970 .

[39]  C. Kennel,et al.  THERMAL ANISOTROPIES AND ELECTROMAGNETIC INSTABILITIES IN THE SOLAR WIND. , 1968 .

[40]  R. Davidson,et al.  Macroscopic Quasilinear Theory of the Garden‐Hose Instability , 1968 .

[41]  F. Scarf,et al.  A plasma instability associated with thermal anisotropies in the solar wind , 1967 .

[42]  Subrahmanyan Chandrasekhar,et al.  The stability of the pinch , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  E. Parker Dynamical Instability in an Anisotropic Ionized Gas of Low Density , 1958 .

[44]  P. Yoon Garden-hose instability in high-beta plasmas , 1995 .