Inertia Tensor Properties in Robot Dynamics Identification: A Linear Matrix Inequality Approach

Physical feasibility of robot dynamics identification is currently receiving renovated attention from the research community. Inertia tensor inequalities (namely the positive definite property) have been extensively used among other physical constraints to check physical consistency of identification methods. Recently, an extra inequality associated to inertia tensor eigenvalues has been included to check physical consistency, showing that the previous methods were incomplete. In this paper we show that this extra inequality incorporates the positive definite property, being more restrictive. We also include it in the linear matrix inequality framework for robot dynamics identification to obtain fully physical estimates. The relevance of the extra inequality is verified through real 7-DOF robot manipulator experiments.

[1]  Yoshihiko Nakamura,et al.  Identification of standard inertial parameters for large-DOF robots considering physical consistency , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Stefan Schaal,et al.  Bayesian robot system identification with input and output noise , 2011, Neural Networks.

[3]  Rui Pedro Duarte Cortesão,et al.  Physical feasibility of robot base inertial parameter identification: A linear matrix inequality approach , 2014, Int. J. Robotics Res..

[4]  Koichi Osuka,et al.  When is the set of base parameter values physically impossible? , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[5]  Antonella Ferrara,et al.  MPC for Robot Manipulators With Integral Sliding Modes Generation , 2017, IEEE/ASME Transactions on Mechatronics.

[6]  Jean-Jacques E. Slotine,et al.  Linear Matrix Inequalities for Physically Consistent Inertial Parameter Identification: A Statistical Perspective on the Mass Distribution , 2017, IEEE Robotics and Automation Letters.

[7]  Jan Swevers,et al.  Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..

[8]  Gentiane Venture,et al.  Real-time implementation of physically consistent identification of human body segments , 2011, 2011 IEEE International Conference on Robotics and Automation.

[9]  Adrien Escande,et al.  Identification of fully physical consistent inertial parameters using optimization on manifolds , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[10]  G. Venture,et al.  Dynamics calibration using inverse dynamics and LS technique — An application to the human body , 2012, 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).

[11]  Alessandro De Luca,et al.  Extracting feasible robot parameters from dynamic coefficients using nonlinear optimization methods , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[12]  V. Mata,et al.  Identification of dynamic parameters of a 3-DOF RPS parallel manipulator , 2008 .

[13]  Rui Cortesão,et al.  Robot Force Control on a Beating Heart , 2017, IEEE/ASME Transactions on Mechatronics.

[14]  Vincenzo Lippiello,et al.  Nonprehensile Manipulation of Deformable Objects: Achievements and Perspectives from the Robotic Dynamic Manipulation Project , 2018, IEEE Robotics & Automation Magazine.

[15]  Jun Nakanishi,et al.  A Bayesian Approach to Nonlinear Parameter Identification for Rigid Body Dynamics , 2006, Robotics: Science and Systems.

[16]  Jun Nakanishi,et al.  Operational Space Control: A Theoretical and Empirical Comparison , 2008, Int. J. Robotics Res..

[17]  Gentiane Venture,et al.  Identification of standard dynamic parameters of robots with positive definite inertia matrix , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Jan Peters,et al.  Model learning for robot control: a survey , 2011, Cognitive Processing.

[19]  Oliver Sawodny,et al.  Dynamic Control of the Bionic Handling Assistant , 2017, IEEE/ASME Transactions on Mechatronics.

[20]  M. Díaz-Rodríguez,et al.  A methodology for dynamic parameters identification of 3-DOF parallel robots in terms of relevant parameters , 2010 .

[21]  Koji Yoshida,et al.  Verification of the Positive Definiteness of the Inertial Matrix of Manipulators Using Base Inertial Parameters , 2000, Int. J. Robotics Res..

[22]  Vicente Mata,et al.  Dynamic parameter identification in industrial robots considering physical feasibility , 2005, Adv. Robotics.

[23]  Vicente Mata,et al.  Dynamic Parameter Identification of Parallel Robots Considering Physical Feasibility and Nonlinear Friction Models , 2007 .

[24]  Bijan Shirinzadeh,et al.  System Identification-Based Sliding Mode Control for Small-Scaled Autonomous Aerial Vehicles With Unknown Aerodynamics Derivatives , 2016, IEEE/ASME Transactions on Mechatronics.