Inertia Tensor Properties in Robot Dynamics Identification: A Linear Matrix Inequality Approach
暂无分享,去创建一个
[1] Yoshihiko Nakamura,et al. Identification of standard inertial parameters for large-DOF robots considering physical consistency , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[2] Stefan Schaal,et al. Bayesian robot system identification with input and output noise , 2011, Neural Networks.
[3] Rui Pedro Duarte Cortesão,et al. Physical feasibility of robot base inertial parameter identification: A linear matrix inequality approach , 2014, Int. J. Robotics Res..
[4] Koichi Osuka,et al. When is the set of base parameter values physically impossible? , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).
[5] Antonella Ferrara,et al. MPC for Robot Manipulators With Integral Sliding Modes Generation , 2017, IEEE/ASME Transactions on Mechatronics.
[6] Jean-Jacques E. Slotine,et al. Linear Matrix Inequalities for Physically Consistent Inertial Parameter Identification: A Statistical Perspective on the Mass Distribution , 2017, IEEE Robotics and Automation Letters.
[7] Jan Swevers,et al. Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..
[8] Gentiane Venture,et al. Real-time implementation of physically consistent identification of human body segments , 2011, 2011 IEEE International Conference on Robotics and Automation.
[9] Adrien Escande,et al. Identification of fully physical consistent inertial parameters using optimization on manifolds , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
[10] G. Venture,et al. Dynamics calibration using inverse dynamics and LS technique — An application to the human body , 2012, 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).
[11] Alessandro De Luca,et al. Extracting feasible robot parameters from dynamic coefficients using nonlinear optimization methods , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).
[12] V. Mata,et al. Identification of dynamic parameters of a 3-DOF RPS parallel manipulator , 2008 .
[13] Rui Cortesão,et al. Robot Force Control on a Beating Heart , 2017, IEEE/ASME Transactions on Mechatronics.
[14] Vincenzo Lippiello,et al. Nonprehensile Manipulation of Deformable Objects: Achievements and Perspectives from the Robotic Dynamic Manipulation Project , 2018, IEEE Robotics & Automation Magazine.
[15] Jun Nakanishi,et al. A Bayesian Approach to Nonlinear Parameter Identification for Rigid Body Dynamics , 2006, Robotics: Science and Systems.
[16] Jun Nakanishi,et al. Operational Space Control: A Theoretical and Empirical Comparison , 2008, Int. J. Robotics Res..
[17] Gentiane Venture,et al. Identification of standard dynamic parameters of robots with positive definite inertia matrix , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[18] Jan Peters,et al. Model learning for robot control: a survey , 2011, Cognitive Processing.
[19] Oliver Sawodny,et al. Dynamic Control of the Bionic Handling Assistant , 2017, IEEE/ASME Transactions on Mechatronics.
[20] M. Díaz-Rodríguez,et al. A methodology for dynamic parameters identification of 3-DOF parallel robots in terms of relevant parameters , 2010 .
[21] Koji Yoshida,et al. Verification of the Positive Definiteness of the Inertial Matrix of Manipulators Using Base Inertial Parameters , 2000, Int. J. Robotics Res..
[22] Vicente Mata,et al. Dynamic parameter identification in industrial robots considering physical feasibility , 2005, Adv. Robotics.
[23] Vicente Mata,et al. Dynamic Parameter Identification of Parallel Robots Considering Physical Feasibility and Nonlinear Friction Models , 2007 .
[24] Bijan Shirinzadeh,et al. System Identification-Based Sliding Mode Control for Small-Scaled Autonomous Aerial Vehicles With Unknown Aerodynamics Derivatives , 2016, IEEE/ASME Transactions on Mechatronics.