Microkinetic analysis and mechanism of the water gas shift reaction over copper catalysts

[1]  F. Illas,et al.  Influence of step sites in the molecular mechanism of the water gas shift reaction catalyzed by copper , 2009 .

[2]  C. Peden,et al.  Simultaneous MS-IR Studies of Surface Formate Reactivity Under Methanol Synthesis Conditions on Cu/SiO2 , 2009 .

[3]  A. Andreasen,et al.  Degree of rate control: how much the energies of intermediates and transition states control rates. , 2009, Journal of the American Chemical Society.

[4]  Manos Mavrikakis,et al.  On the mechanism of low-temperature water gas shift reaction on copper. , 2008, Journal of the American Chemical Society.

[5]  Ping Liu,et al.  Water-gas-shift reaction on metal nanoparticles and surfaces. , 2007, The Journal of chemical physics.

[6]  Manos Mavrikakis,et al.  Prediction of Experimental Methanol Decomposition Rates on Platinum from First Principles , 2006 .

[7]  M. Vannice Kinetics of Catalytic Reactions , 2005 .

[8]  J. Dumesic,et al.  Role of rare earth cations in Y zeolite for hydrocarbon cracking. , 2005, The journal of physical chemistry. B.

[9]  Robert J. Farrauto,et al.  Determination of kinetic parameters for the water-gas shift reaction on copper catalysts under realistic conditions for fuel cell applications , 2003 .

[10]  Jens R. Rostrup-Nielsen,et al.  Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals , 2002, Science.

[11]  Michel Boudart Kinetic generalities in catalysis , 2000 .

[12]  H. Topsøe,et al.  FTIR studies of dynamic surface structural changes in Cu-based methanol synthesis catalysts , 1999 .

[13]  Jian Li,et al.  Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures , 1996 .

[14]  Ib Chorkendorff,et al.  A Microkinetic Analysis of the Water–Gas Shift Reaction under Industrial Conditions , 1996 .

[15]  S. C. Parker,et al.  Methanol synthesis and reverse water-gas shift kinetics over clean polycrystalline copper , 1995 .

[16]  Charles T. Campbell,et al.  Future Directions and Industrial Perspectives Micro- and macro-kinetics: Their relationship in heterogeneous catalysis , 1994 .

[17]  Charles T. Campbell,et al.  A kinetic model of the water gas shift reaction , 1992 .

[18]  C. Campbell,et al.  Kinetics and mechanism of the water-gas shift reaction catalysed by the clean and Cs-promoted Cu(110) surface: a comparison with Cu(111) , 1990 .

[19]  C. Campbell,et al.  A surface science investigation of the water-gas shift reaction on Cu(111) , 1987 .

[20]  K. C. Waugh,et al.  The measurement of copper surface areas by reactive frontal chromatography , 1987 .

[21]  M. Boudart,et al.  Experimental criterion for the absence of artifacts in the measurement of rates of heterogeneous catalytic reactions , 1982 .

[22]  D. Ollis,et al.  The chemistry and catalysis of the water gas shift reaction: 1. The kinetics over supported metal catalysts , 1981 .

[23]  W. A. Jong,et al.  Kinetics and mechanism of the CO shift on CuZnO: 1. Kinetics of the forward and reverse CO shift reactions , 1980 .

[24]  W. A. Jong,et al.  Kinetics and mechanism of the CO shift on CuZnO: II. Kinetics of the decomposition of formic acid , 1980 .