Effects of Proximity-Dependent Metal Migration on Bifunctional Composites Catalyzed Syngas to Olefins

[1]  Zhongmin Liu,et al.  Direct conversion of toluene into styrene with high selectivity over a composite catalyst , 2021 .

[2]  Xiulian Pan,et al.  Role of SAPO-18 Acidity in Direct Syngas Conversion to Light Olefins , 2020 .

[3]  W. Ying,et al.  Role of nanosized sheet-like SAPO-34 in bifunctional catalyst for syngas-to-olefins reaction , 2020 .

[4]  Xiaolian Liu,et al.  Tandem Catalysis for Hydrogenation of CO and CO2 to Lower Olefins with Bifunctional Catalysts Composed of Spinel Oxide and SAPO-34 , 2020 .

[5]  Z. Hou,et al.  A Kinetic View on Proximity-Dependent Selectivity of Carbon Dioxide Reduction on Bifunctional Catalysts , 2020, ACS Catalysis.

[6]  J. Hofmann,et al.  Effect of proximity and support material on deactivation of bifunctional catalysts for the conversion of synthesis gas to olefins and aromatics , 2020 .

[7]  Ke Gong,et al.  C-C bond formation in syngas conversion over Zn sites grafted on ZSM-5. , 2020, Angewandte Chemie.

[8]  Shuang Li,et al.  Molecular-Level Proximity of Metal and Acid Sites in Zeolite-Encapsulated Pt Nanoparticles for Selective Multistep Tandem Catalysis , 2020 .

[9]  Glenn J. Sunley,et al.  Impact of the Spatial Organization of Bifunctional Metal-Zeolite Catalysts for Hydroisomerization of Light Alkanes. , 2019, Angewandte Chemie.

[10]  Wei Wu,et al.  Bifunctional catalysts for the hydroisomerization of n-alkanes: the effects of metal–acid balance and textural structure , 2019, Catalysis Science & Technology.

[11]  Tao Zhang,et al.  Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules , 2019, Green Chemistry.

[12]  Yuxiang Chen,et al.  High-Quality Gasoline Directly from Syngas by Dual Metal Oxide-Zeolite (OX-ZEO) Catalysis. , 2019, Angewandte Chemie.

[13]  Huiwen Huang,et al.  Enhanced ethene to propene ratio over Zn-modified SAPO-34 zeolites in methanol-to-olefin reaction , 2019, Catalysis Science & Technology.

[14]  Z. Wen,et al.  Recent advances in precious metal-free bifunctional catalysts for electrochemical conversion systems , 2019, Journal of Materials Chemistry A.

[15]  D. Wang,et al.  Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts , 2019, Nature Communications.

[16]  E. Borfecchia,et al.  High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics , 2018 .

[17]  Xiaolian Liu,et al.  Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates , 2018, Chemical science.

[18]  Yuhan Sun,et al.  Direct Production of Lower Olefins from CO2 Conversion via Bifunctional Catalysis , 2018 .

[19]  Xiulian Pan,et al.  Direct conversion of syngas to aromatics. , 2017, Chemical communications.

[20]  Yuhan Sun,et al.  Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst , 2017, Nature Chemistry.

[21]  Xiulian Pan,et al.  Role of Manganese Oxide in Syngas Conversion to Light Olefins , 2017 .

[22]  Mbongiseni W. Dlamini,et al.  Effects of Co and Ru Intimacy in Fischer–Tropsch Catalysts Using Hollow Carbon Sphere Supports: Assessment of the Hydrogen Spillover Processes , 2017 .

[23]  Xiaolian Liu,et al.  Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling. , 2016, Angewandte Chemie.

[24]  Q. Fu,et al.  Selective conversion of syngas to light olefins , 2016, Science.

[25]  Christopher W. Jones,et al.  Acid–Base Bifunctional Shell Cross-Linked Micelle Nanoreactor for One-Pot Tandem Reaction , 2016 .

[26]  J. Martens,et al.  Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons , 2015, Nature.

[27]  G. Cao,et al.  Pore Modification of H–SAPO-34 Using Dialkyl Zinc: Structural Characterization and Reaction Pathway , 2011 .

[28]  Yuyang Li,et al.  Recent applications of synchrotron VUV photoionization mass spectrometry: insight into combustion chemistry. , 2010, Accounts of chemical research.

[29]  Zhongmin Liu,et al.  Synthesis of SAPO-34 with only Si(4Al) species: Effect of Si contents on Si incorporation mechanism and Si coordination environment of SAPO-34 , 2008 .

[30]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[31]  M Newville,et al.  IFEFFIT: interactive XAFS analysis and FEFF fitting. , 2001, Journal of synchrotron radiation.

[32]  T. Fujitani,et al.  Evidence for the migration of ZnOx in a Cu/ZnO methanol synthesis catalyst , 1994 .

[33]  K. Siefering,et al.  Chemical reactions of ZnCu, ZnCu2O, and ZnCuO thin films , 1989 .

[34]  P. Weisz Polyfunctional Heterogeneous Catalysis , 1962 .