Boundary value problem for five-dimensional stationary rotating black holes

We study the boundary value problem for stationary rotating black hole solutions to the five-dimensional vacuum Einstein equation. Assuming the existence of two additional commuting rotational Killing vector fields and sphericity of the horizon topology, we show that a black hole with a regular event horizon is uniquely characterized by its mass and a pair of angular momenta.

[1]  R. Emparan,et al.  Black Rings, Supertubes, and a Stringy Resolution of Black Hole Non-Uniqueness , 2003, hep-th/0310008.

[2]  R. Emparan,et al.  Instability of ultra-spinning black holes , 2003, hep-th/0308056.

[3]  D. Ida,et al.  Stationary Einstein-Maxwell fields in arbitrary dimensions , 2003, gr-qc/0307095.

[4]  H. Kodama,et al.  Stability of Higher-Dimensional Schwarzschild Black Holes , 2003, hep-th/0305185.

[5]  H. Kodama,et al.  A Master Equation for Gravitational Perturbations of Maximally Symmetric Black Holes in Higher Dimensions , 2003, hep-th/0305147.

[6]  M. Rogatko Uniqueness theorem of static degenerate and nondegenerate charged black holes in higher dimensions , 2003, hep-th/0302091.

[7]  H. Reall Higher dimensional black holes and supersymmetry , 2002, hep-th/0211290.

[8]  B. Kol Speculative generalization of black hole uniqueness to higher dimensions , 2002, hep-th/0208056.

[9]  M. Rogatko Uniqueness theorem for static black hole solutions of σ-models in higher dimensions , 2002, hep-th/0207187.

[10]  G. Gibbons,et al.  Uniqueness of (dilatonic) charged black holes and black p-branes in higher dimensions , 2002, hep-th/0206136.

[11]  G. Gibbons,et al.  Uniqueness and nonuniqueness of static black holes in higher dimensions. , 2002, Physical review letters.

[12]  G. Gibbons,et al.  Uniqueness and non-uniqueness of static vacuum black holes in higher dimensions , 2002, gr-qc/0203004.

[13]  H. Reall,et al.  A rotating black ring solution in five dimensions. , 2001, Physical review letters.

[14]  Scott D. Thomas,et al.  High-energy colliders as black hole factories: The End of short distance physics , 2001, hep-ph/0106219.

[15]  G. Landsberg,et al.  Black holes at the Large Hadron Collider. , 2001, Physical review letters.

[16]  T. Banks,et al.  A Model for High Energy Scattering in Quantum Gravity , 1999, hep-th/9906038.

[17]  Seungsu Hwang A Rigidity Theorem for Ricci Flat Metrics , 1998 .

[18]  M. Heusler Black Hole Uniqueness Theorems , 1996 .

[19]  Gregory,et al.  Black strings and p-branes are unstable. , 1993, Physical review letters.

[20]  G. Hooft Graviton dominance in ultra-high-energy scattering , 1987 .

[21]  B. Carter Mathematical Foundations of the Theory of Relativistic Stellar and Black Hole Configurations , 1987 .

[22]  R. Myers,et al.  Black holes in higher dimensional space-times , 1986 .

[23]  P. Mazur A global identity for nonlinear σ-models , 1984 .

[24]  D. Maison Ehlers-Harrison-type transformations for Jordan's extended theory of gravitation , 1979 .

[25]  B. Carter The commutation property of a stationary, axisymmetric system , 1970 .