Uniform Long-Time and Propagation of Chaos Estimates for Mean Field Kinetic Particles in Non-convex Landscapes

Combining the results of [14] and [10], the trend to equilibrium in large time is studied for a large particle system associated to a Vlasov-Fokker-Planck equation. Under some conditions (that allow non-convex confining potentials) the convergence rate is proven to be independent from the number of particles. From this are derived uniform in time propagation of chaos estimates and an exponentially fast convergence for the semi-linear equation itself.

[1]  Pierre Monmarché Generalized Γ Calculus and Application to Interacting Particles on a Graph , 2019 .

[2]  C. Villani,et al.  Quantitative Concentration Inequalities for Empirical Measures on Non-compact Spaces , 2005, math/0503123.

[3]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[4]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[5]  A. Guillin,et al.  Uniform Poincar{\'e} and logarithmic Sobolev inequalities for mean field particles systems , 2019, 1909.07051.

[6]  A. Guillin,et al.  Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation , 2009, 0906.1417.

[7]  S. Méléard Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models , 1996 .

[8]  D. Talay Stochastic Hamiltonian Systems : Exponential Convergence to the Invariant Measure , and Discretization by the Implicit Euler Scheme , 2002 .

[9]  Manh Hong Duong,et al.  Stationary solutions of the Vlasov-Fokker-Planck equation: Existence, characterization and phase-transition , 2015, Appl. Math. Lett..

[10]  M. Kac Foundations of Kinetic Theory , 1956 .

[11]  P. Cattiaux,et al.  Entropic multipliers method for Langevin diffusion and weighted log Sobolev inequalities , 2017, Journal of Functional Analysis.

[12]  Florent Malrieu,et al.  Logarithmic Sobolev Inequalities for Some Nonlinear Pde's , 2001 .

[13]  Alain Durmus,et al.  An elementary approach to uniform in time propagation of chaos , 2018, Proceedings of the American Mathematical Society.

[14]  A. Guillin,et al.  The kinetic Fokker-Planck equation with mean field interaction , 2019, Journal de Mathématiques Pures et Appliquées.

[15]  A. Guillin,et al.  On the rate of convergence in Wasserstein distance of the empirical measure , 2013, 1312.2128.

[16]  Gershon Wolansky,et al.  Optimal Transport , 2021 .

[17]  A. Guillin,et al.  Degenerate Fokker–Planck equations: Bismut formula, gradient estimate and Harnack inequality , 2011, 1103.2817.

[18]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .

[19]  A. Sznitman Topics in propagation of chaos , 1991 .

[20]  David P. Herzog,et al.  Gamma Calculus Beyond Villani and Explicit Convergence Estimates for Langevin Dynamics with Singular Potentials , 2019, Archive for Rational Mechanics and Analysis.

[21]  I. Csiszár Sanov Property, Generalized $I$-Projection and a Conditional Limit Theorem , 1984 .

[22]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[23]  Laurent Thomann,et al.  On global existence and trend to the equilibrium for the Vlasov-Poisson-Fokker-Planck system with exterior confining potential , 2015, 1505.01698.

[24]  Pierre Monmarché Long-time behaviour and propagation of chaos for mean field kinetic particles , 2017 .

[25]  B. Zegarliński,et al.  Dobrushin uniqueness theorem and logarithmic Sobolev inequalities , 1992 .

[26]  C. Mouhot,et al.  Hypocoercivity for kinetic equations with linear relaxation terms , 2008, 0810.3493.

[27]  A. Eberle,et al.  Couplings and quantitative contraction rates for Langevin dynamics , 2017, The Annals of Probability.

[28]  S. Aida,et al.  Logarithmic Sobolev Inequalities and Spectral Gaps: Perturbation Theory , 1994 .