Symplectic wavelet collocation method for Hamiltonian wave equations

This paper introduces a novel symplectic wavelet collocation method for solving nonlinear Hamiltonian wave equations. Based on the autocorrelation functions of Daubechies compactly supported scaling functions, collocation method is conducted for the spatial discretization, which leads to a finite-dimensional Hamiltonian system. Then, appropriate symplectic scheme is employed for the integration of the Hamiltonian system. Under the hypothesis of periodicity, the properties of the resulted space differentiation matrix are analyzed in detail. Conservation of energy and momentum is also investigated. Various numerical experiments show the effectiveness of the proposed method.

[1]  S. Reich,et al.  Numerical methods for Hamiltonian PDEs , 2006 .

[2]  C. M. Schober,et al.  Dispersive properties of multisymplectic integrators , 2008, J. Comput. Phys..

[3]  D. B. Duncan,et al.  Sympletic Finite Difference Approximations of the Nonlinear Klein--Gordon Equation , 1997 .

[4]  Nicholas K.-R. Kevlahan,et al.  An adaptive multilevel wavelet collocation method for elliptic problems , 2005 .

[5]  S. Bertoluzza,et al.  A Wavelet Collocation Method for the Numerical Solution of Partial Differential Equations , 1996 .

[6]  G. Beylkin On the representation of operators in bases of compactly supported wavelets , 1992 .

[7]  Jing-Bo Chen,et al.  Symplectic And Multisymplectic Fourier Pseudospectral Discretizations for the Klein–Gordon Equation , 2006 .

[8]  R. McLachlan Symplectic integration of Hamiltonian wave equations , 1993 .

[9]  Jianwei Ma An exploration of multiresolution symplectic scheme for wave propagation using second-generation wavelets , 2004 .

[10]  Ma Jian-wei,et al.  Multiresolution Symplectic Scheme for wave propagation in complex media , 2004 .

[11]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[12]  Liu Zhen,et al.  Symplectic and multisymplectic schemes with the simple finite element method , 2003 .

[13]  Naoki Saito,et al.  Multiresolution representations using the autocorrelation functions of compactly supported wavelets , 1993, IEEE Trans. Signal Process..

[14]  C. M. Schober,et al.  Symplectic integrators for the Ablowitz–Ladik discrete nonlinear Schrödinger equation , 1999 .

[15]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[16]  Ruxun Liu,et al.  A survey on symplectic and multi-symplectic algorithms , 2007, Appl. Math. Comput..

[17]  O. Vasilyev,et al.  A Fast Adaptive Wavelet Collocation Algorithm for Multidimensional PDEs , 1997 .

[18]  Mark J. Ablowitz,et al.  Symplectic methods for the nonlinear Schro¨dinger equation , 1994 .

[19]  Jianwen Cao,et al.  Symplectic methods for the Ablowitz–Ladik discrete nonlinear Schrödinger equation , 2007 .

[20]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[21]  S. Reich Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .

[22]  Yifa Tang,et al.  Formal energy of a symplectic scheme for hamiltonian systems and its applications (I) , 1994 .

[23]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[24]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[25]  C. Scovel,et al.  Symplectic integration of Hamiltonian systems , 1990 .

[26]  Johan Waldén,et al.  Adaptive Wavelet Methods for Hyperbolic PDEs , 1998, J. Sci. Comput..

[27]  Samuel Paolucci,et al.  A multilevel wavelet collocation method for solving partial differential equations in a finite domain , 1995 .

[28]  B. Cano,et al.  Conserved quantities of some Hamiltonian wave equations after full discretization , 2006, Numerische Mathematik.