Method development and validation for the chiral separation of peptides in the presence of cyclodextrins using capillary electrophoresis and experimental design.

[1]  William G. Cochran,et al.  Experimental Designs, 2nd Edition , 1950 .

[2]  G. Derringer,et al.  Simultaneous Optimization of Several Response Variables , 1980 .

[3]  James M. Minor,et al.  Optimization of solvent strength and selectivity for reversed-phase liquid chromatography using an interactive mixture-design statistical technique , 1980 .

[4]  The automatic optimization of separations in high-performance liquid chromatography , 1983 .

[5]  J. Berridge Automated Optimization in high-performance liquid chromatography , 1986 .

[6]  J. Chrétien,et al.  Factor analysis of experimental design in chromatography , 1993 .

[7]  K. Altria,et al.  Plackett-Burman experimental design in chiral analysis using capillary electrophoresis , 1994 .

[8]  Professor Dr. Miklos Bodanszky,et al.  The Practice of Peptide Synthesis , 1994, Springer Lab Manual.

[9]  H. Haario,et al.  Optimization of selectivity and resolution in micellar electrokinetic capillary chromatography with a mixed micellar system of sodium dodecyl sulfate and sodium cholate , 1996, Electrophoresis.

[10]  Desire L. Massart,et al.  Application of Derringer's desirability function for the selection of optimum separation conditions in capillary zone electrophoresis , 1996 .

[11]  Yannis L. Loukas Formulation optimization of novel multicomponent photoprotective liposomes by using response surface methodology , 1996 .

[12]  K. Altria,et al.  Validated capillary electrophoresis method for the analysis of a range of acidic drugs and excipients. , 1997, Journal of pharmaceutical and biomedical analysis.

[13]  B. Chankvetadze Capillary Electrophoresis in Chiral Analysis , 1997 .

[14]  Johanna Smeyers-Verbeke,et al.  Handbook of Chemometrics and Qualimetrics: Part A , 1997 .

[15]  Experimental studies for screening the factors that influence the effectiveness of new multicomponent and protective liposomes , 1998 .

[16]  S. Fanali,et al.  Experimental design methodologies to optimize the CE separation of epinephrine enantiomers , 1998 .

[17]  Roger Phan-Tan-Luu,et al.  Pharmaceutical Experimental Design , 1998 .

[18]  Understanding molecular association and isomers recognition in isomer-cyclodextrin multiple complex formation by improved liquid chromatographic studies. , 1998, Analytical chemistry.

[19]  K. Waldron,et al.  Estimation of the pH‐independent binding constants of alanylphenylalanine and leucylphenylalanine stereoisomers with β‐cyclodextrin in the presence of urea , 1999, Electrophoresis.

[20]  G. Scriba,et al.  pH-Dependent reversal of the chiral recognition of tripeptide enantiomers by carboxymethyl-β-cyclodextrin , 1999 .

[21]  L. Kremser,et al.  pKa shift‐associated effects in enantioseparations by cyclodextrin‐mediated capillary zone electrophoresis , 1999, Electrophoresis.

[22]  Y. Daali,et al.  Experimental design for enantioselective separation of celiprolol by capillary electrophoresis using sulfated β‐cyclodextrin , 1999, Electrophoresis.

[23]  V. Kašička Capillary electrophoresis of peptides , 1999, Electrophoresis.

[24]  H. Wan,et al.  Chiral separation of amino acids and peptides by capillary electrophoresis. , 2000, Journal of chromatography. A.

[25]  S. Sabbah,et al.  Influence of the structure of cyclodextrins and amino acid sequence of dipeptides and tripeptides on the pH-dependent reversal of the migration order in capillary electrophoresis. , 2000, Journal of chromatography. A.