In the diffraction shadow: Norton waves versus surface plasmon polaritons in the optical region

Surface electromagnetic modes supported by metal surfaces have a great potential for use in miniaturized detectors and optical circuits. For many applications, these modes are excited locally. In the optical regime, surface plasmon polaritons (SPPs) have been thought to dominate the fields at the surface, beyond a transition region comprising 3-4 wavelengths from the source. In this work, we demonstrate that at sufficiently long distances SPPs are not the main contribution to the field. Instead, for all metals, a different type of wave prevails, which we term Norton waves (NWs) for their resemblance to those found in the radio-wave regime at the surface of the Earth. Our results show that NWs are stronger at the surface than SPPs at distances larger than 6-9 SPP absorption lengths, the precise value depending on wavelength and metal. Moreover, NWs decay more slowly than SPPs in the direction normal to the surface.

[1]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[2]  Philippe Lalanne,et al.  Interaction between optical nano-objects at metallo-dielectric interfaces , 2006 .

[3]  Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces , 2005, cond-mat/0508041.

[4]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[5]  H. J. Lezec,et al.  The optical response of nanostructured surfaces and the composite diffracted evanescent wave model , 2006 .

[6]  P. Lalanne,et al.  A microscopic view of the electromagnetic properties of sub-λ metallic surfaces , 2009 .

[7]  A. Dereux,et al.  Efficient unidirectional nanoslit couplers for surface plasmons , 2007, cond-mat/0703407.

[8]  Eric Bourillot,et al.  Direct observation of localized surface plasmon coupling , 1999 .

[9]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[10]  J. Zenneck Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie , 1907 .

[11]  E. Eliel,et al.  Plasmon-assisted two-slit transmission , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[12]  C. Soukoulis,et al.  Theoretical analysis of the surface wave along a metal-dielectric interface , 2009 .

[13]  P Lalanne,et al.  Near-field analysis of surface waves launched at nanoslit apertures. , 2007, Physical review letters.

[14]  Olivier J. F. Martin,et al.  Transient behavior of surface plasmon polaritons scattered at a subwavelength groove , 2007, 0704.0703.

[15]  T. Ebbesen,et al.  Propagation oscillations in the near-field response of traveling surface waves launched by metallic nanoapertures , 2008 .

[16]  A. Sommerfeld Über die Ausbreitung der Wellen in der drahtlosen Telegraphie , 1909 .

[17]  Thomas W. Ebbesen,et al.  Surface-plasmon circuitry , 2008 .

[18]  Luis Martín-Moreno,et al.  Influence of material properties on extraordinary optical transmission through hole arrays , 2008 .

[19]  T. Ebbesen,et al.  Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon , 2008 .

[20]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[21]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[22]  R. Collin,et al.  Hertzian dipole radiating over a lossy earth or sea: some early and late 20th-century controversies , 2004, IEEE Antennas and Propagation Magazine.

[23]  Girard,et al.  Generalized Field Propagator for Electromagnetic Scattering and Light Confinement. , 1995, Physical review letters.

[24]  P Lalanne,et al.  Theory of surface plasmon generation at nanoslit apertures. , 2005, Physical review letters.

[25]  K. Norton The Propagation of Radio Waves over the Surface of the Earth and in the Upper Atmosphere , 1936, Proceedings of the Institute of Radio Engineers.

[26]  L. Felsen,et al.  Radiation and scattering of waves , 1972 .

[27]  Silvania F. Pereira,et al.  Numerical analysis of a slit-groove diffraction problem , 2007 .