Damping of inter-area oscillations using energy storage

Low frequency inter-area oscillations have been identified as a significant problem in utility systems due to the potential for system damage and the resulting restrictions on power transmission over select lines. Previous research has identified real power injection by energy storage based damping control nodes as a promising approach to mitigate inter-area oscillations. In this paper, a candidate energy storage system based on UltraCapacitor technology is evaluated for damping control applications in the Western Electric Coordinating Council (WECC), and an analytical method for ensuring proper stability margins is also presented for inclusion in a future supervisory control algorithm. Dynamic simulations of the WECC were performed to validate the expected system performance. Finally, the Nyquist stability criteria was employed to derive safe operating regions in the gain, time delay space for a simple two-area system to provide guaranteed margins of stability.