Unconstrained texture classification using efficient jet texton learning

Abstract This paper proposes a simple and effective texture recognition method that uses a new class of jet texton learning. In this approach, first a Jet space representation of the image is derived from a set of derivative of Gaussian (DtGs) filter responses upto 2nd order ( R 6 ), so called local jet vector ( Ljv ), which satisfies the scale space properties, where the combinations of local jets preserve the intrinsic local structure of the image in a hierarchical way and are invariant to image translation, rotation and scaling. Next, the jet textons dictionary is learned using K-means clustering algorithm from DtGs responses, followed by a contrast Weber law normalization pre-processing step. Finally, the feature distribution of jet texton is considered as a model which is utilized to classify texture using a non-parametric nearest regularized subspace ( Nrs ) classifier. Extensive experiments on three large and well-known benchmark database for texture classification like KTH-TIPS, Brodatz and CUReT show that the proposed method achieves state-of-the-art performance, especially when the number of available training samples is limited. The source code of complete system is made publicly available at https://github.com/swalpa/JetTexton .

[1]  Debotosh Bhattacharjee,et al.  Heterogeneous face matching using geometric edge-texture feature (GETF) and multiple fuzzy-classifier system , 2016, Appl. Soft Comput..

[2]  Manik Varma,et al.  Locally Invariant Fractal Features for Statistical Texture Classification , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[3]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Zhenhua Guo,et al.  Robust Texture Image Representation by Scale Selective Local Binary Patterns , 2016, IEEE Transactions on Image Processing.

[5]  Jiwen Lu,et al.  PCANet: A Simple Deep Learning Baseline for Image Classification? , 2014, IEEE Transactions on Image Processing.

[6]  Iasonas Kokkinos,et al.  Deep Filter Banks for Texture Recognition, Description, and Segmentation , 2015, International Journal of Computer Vision.

[7]  Matti Pietikäinen,et al.  From BoW to CNN: Two Decades of Texture Representation for Texture Classification , 2018, International Journal of Computer Vision.

[8]  Yong Xu,et al.  A distinct and compact texture descriptor , 2014, Image Vis. Comput..

[9]  Ronald M. Lesperance,et al.  The Gaussian derivative model for spatial-temporal vision: II. Cortical data. , 2001, Spatial vision.

[10]  Shu Liao,et al.  Dominant Local Binary Patterns for Texture Classification , 2009, IEEE Transactions on Image Processing.

[11]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[12]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Guoying Zhao,et al.  BRINT: Binary Rotation Invariant and Noise Tolerant Texture Classification , 2014, IEEE Transactions on Image Processing.

[14]  Zhenhua Guo,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[15]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[16]  Rong Xiao,et al.  Pairwise Rotation Invariant Co-Occurrence Local Binary Pattern , 2014, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[18]  Yong Xu,et al.  Viewpoint Invariant Texture Description Using Fractal Analysis , 2009, International Journal of Computer Vision.

[19]  Lewis D. Griffin,et al.  Using Basic Image Features for Texture Classification , 2010, International Journal of Computer Vision.

[20]  Yanhui Guo,et al.  An effective color texture image segmentation algorithm based on hermite transform , 2018, Appl. Soft Comput..

[21]  Xianghua Xie,et al.  A Galaxy of Texture Features , 2008 .

[22]  Matti Pietikäinen,et al.  Texture Classification in Extreme Scale Variations Using GANet , 2018, IEEE Transactions on Image Processing.

[23]  Stéphane Mallat,et al.  Invariant Scattering Convolution Networks , 2012, IEEE transactions on pattern analysis and machine intelligence.

[24]  F. J. Anscombe,et al.  The Validity of Comparative Experiments , 1948 .

[25]  Kazuhiro Fukui,et al.  Feature Extraction Based on Co-occurrence of Adjacent Local Binary Patterns , 2011, PSIVT.

[26]  Bhabatosh Chanda,et al.  A novel cancelable iris recognition system based on feature learning techniques , 2017, Inf. Sci..

[27]  James E. Fowler,et al.  Nearest Regularized Subspace for Hyperspectral Classification , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Paul W. Fieguth,et al.  Texture Classification from Random Features , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Shiv Ram Dubey,et al.  Local ZigZag Max histograms of pooling pattern for texture classification , 2019, Electronics Letters.

[30]  Guizhong Liu,et al.  Scale- and Rotation-Invariant Local Binary Pattern Using Scale-Adaptive Texton and Subuniform-Based Circular Shift , 2012, IEEE Transactions on Image Processing.

[31]  Matti Pietikäinen,et al.  Rotation-Invariant Image and Video Description With Local Binary Pattern Features , 2012, IEEE Transactions on Image Processing.

[32]  Mario Fritz,et al.  Classifying materials in the real world , 2010, Image Vis. Comput..

[33]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[34]  Mario Fritz,et al.  On the Significance of Real-World Conditions for Material Classification , 2004, ECCV.

[35]  Shiv Ram Dubey,et al.  Local Wavelet Pattern: A New Feature Descriptor for Image Retrieval in Medical CT Databases , 2015, IEEE Transactions on Image Processing.

[36]  Andrew Zisserman,et al.  A Statistical Approach to Texture Classification from Single Images , 2005, International Journal of Computer Vision.

[37]  Zhenhua Guo,et al.  Rotation invariant texture classification using LBP variance (LBPV) with global matching , 2010, Pattern Recognit..

[38]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[39]  Bidyut Baran Chaudhuri,et al.  HybridSN: Exploring 3-D–2-D CNN Feature Hierarchy for Hyperspectral Image Classification , 2019, IEEE Geoscience and Remote Sensing Letters.

[40]  Bhabatosh Chanda,et al.  Local morphological pattern: A scale space shape descriptor for texture classification , 2018, Digit. Signal Process..

[41]  Lewis D. Griffin The Second Order Local-Image-Structure Solid , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Lakhmi C. Jain,et al.  Local Binary Patterns: New Variants and Applications , 2013, Local Binary Patterns.

[43]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[44]  M. L. Dewal,et al.  Multiresolution local binary pattern variants based texture feature extraction techniques for efficient classification of microscopic images of hardwood species , 2015, Appl. Soft Comput..

[45]  Bhabatosh Chanda,et al.  Local directional ZigZag pattern: A rotation invariant descriptor for texture classification , 2018, Pattern Recognit. Lett..

[46]  Max A. Viergever,et al.  The Gaussian scale-space paradigm and the multiscale local jet , 1996, International Journal of Computer Vision.

[47]  E. S. Gopi Subbu,et al.  Ant Colony Technique for Optimizing the Order of Cascaded SVM Classifier for Sunflower Seed Classification , 2018, IEEE Transactions on Emerging Topics in Computational Intelligence.

[48]  Jonathan D. Victor,et al.  Simultaneously Band and Space Limited Functions in Two Dimensions, and Receptive Fields of Visual Neurons , 2003 .

[49]  Yan Song,et al.  Gaussian derivative models and ensemble extreme learning machine for texture image classification , 2018, Neurocomputing.

[50]  Jean-Bernard Martens,et al.  The Hermite transform-theory , 1990, IEEE Trans. Acoust. Speech Signal Process..

[51]  Matti Pietikäinen,et al.  Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features , 2009, SCIA.

[52]  Andrew Zisserman,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, AMFG.

[54]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[55]  Bidyut Baran Chaudhuri,et al.  Affine Differential Local Mean ZigZag Pattern for Texture Classification , 2018, TENCON 2018 - 2018 IEEE Region 10 Conference.

[56]  Bo Markussen,et al.  Second Order Structure of Scale-Space Measurements , 2008, Journal of Mathematical Imaging and Vision.