A Branch-and-Reduce Algorithm for Finding a Minimum Independent Dominating Set

A dominating set of a graph G = (V,E) is a subset of vertices such that every vertex in has at least one neighbour in . Moreover if is an independent set, i.e. no vertices in are pairwise adjacent, then is said to be an independent dominating set. Finding a minimum independent dominating set in a graph is an NP-hard problem. We give an algorithm computing a minimum independent dominating set of a graph on n vertices in time O(1.3575n). Furthermore, we show that Ω(1.3247n) is a lower bound on the worst-case running time of this algorithm.

[1]  Hans L. Bodlaender,et al.  Design by Measure and Conquer, A Faster Exact Algorithm for Dominating Set , 2008, STACS.

[2]  Maw-Shang Chang,et al.  Efficient Algorithms for the Domination Problems on Interval and Circular-Arc Graphs , 1992, SIAM J. Comput..

[3]  Serge Gaspers,et al.  A universally fastest algorithm for Max 2-Sat, Max 2-CSP, and everything in between , 2009, J. Comput. Syst. Sci..

[4]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[5]  Fabrizio Grandoni,et al.  A measure & conquer approach for the analysis of exact algorithms , 2009, JACM.

[6]  Michael R. Fellows,et al.  Parameterized Approximation Problems , 2006, IWPEC.

[7]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[8]  Yehoshua Perl,et al.  Clustering and domination in perfect graphs , 1984, Discret. Appl. Math..

[9]  Sriram V. Pemmaraju,et al.  Hardness of Approximating Independent Domination in Circle Graphs , 1999, ISAAC.

[10]  Dieter Kratsch,et al.  Domination on Cocomparability Graphs , 1993, SIAM J. Discret. Math..

[11]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[12]  Rolf Niedermeier,et al.  Improved Tree Decomposition Based Algorithms for Domination-like Problems , 2002, LATIN.

[13]  Robert B. Allan,et al.  On domination and independent domination numbers of a graph , 1978, Discret. Math..

[14]  Ingo Schiermeyer Problems remaining NP-complette for sparse or dense graphs , 1995, Discuss. Math. Graph Theory.

[15]  Dieter Kratsch,et al.  On Independent Sets and Bicliques in Graphs , 2008, WG.

[16]  Martin Farber,et al.  Independent domination in chordal graphs , 1982, Oper. Res. Lett..

[17]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[18]  Fabrizio Grandoni,et al.  Measure and conquer: a simple O(20.288n) independent set algorithm , 2006, SODA '06.

[19]  Hans L. Bodlaender,et al.  Exact algorithms for dominating set , 2011, Discret. Appl. Math..

[20]  E. Cockayne Domination of undirected graphs — A survey , 1978 .

[21]  Ola Angelsmark Constructing Algorithms for Constraint Satisfaction and Related Problems : Methods and Applications , 2005 .

[22]  Robert W. Irving On Approximating the Minimum Independent Dominating Set , 1991, Inf. Process. Lett..

[23]  Dieter Kratsch,et al.  On Independent Sets and Bicliques in Graphs , 2008, Algorithmica.

[24]  Thomas C. van Dijk,et al.  Inclusion/Exclusion Meets Measure and Conquer , 2009, ESA.

[25]  Dominik Scheder,et al.  A full derandomization of schöning's k-SAT algorithm , 2010, STOC.

[26]  Fabrizio Grandoni,et al.  Measure and Conquer: Domination - A Case Study , 2005, ICALP.

[27]  Magnús M. Halldórsson,et al.  Approximating the Minimum Maximal Independence Number , 1993, Inf. Process. Lett..

[28]  Robert E. Tarjan,et al.  Finding a Maximum Independent Set , 1976, SIAM J. Comput..

[29]  Fabrizio Grandoni,et al.  Some New Techniques in Design and Analysis of Exact (Exponential) Algorithms , 2005, Bull. EATCS.

[30]  Vangelis Th. Paschos,et al.  Fast Algorithms for min independent dominating set , 2010, SIROCCO.

[31]  Jon M. Kleinberg,et al.  A deterministic (2-2/(k+1))n algorithm for k-SAT based on local search , 2002, Theor. Comput. Sci..

[32]  Thomas C. van Dijk,et al.  Inclusion/Exclusion Meets Measure and Conquer , 2013, Algorithmica.

[33]  Dieter Kratsch,et al.  Exponential Time Algorithms for the Minimum Dominating Set Problem on Some Graph Classes , 2006, SWAT.

[34]  Fabrizio Grandoni,et al.  A note on the complexity of minimum dominating set , 2006, J. Discrete Algorithms.

[35]  Serge Gaspers,et al.  Exponential Time Algorithms - Structures, Measures, and Bounds , 2010 .

[36]  Joachim Kneis,et al.  A Fine-grained Analysis of a Simple Independent Set Algorithm , 2009, FSTTCS.

[37]  J. Moon,et al.  On cliques in graphs , 1965 .

[38]  Vangelis Th. Paschos,et al.  A Bottom-Up Method and Fast Algorithms for max independent set , 2010, SWAT.

[39]  Dieter Kratsch,et al.  Independent Sets in Asteroidal Triple-Free Graphs , 1997, SIAM J. Discret. Math..

[40]  Vangelis Th. Paschos,et al.  Fast Algorithms for max independent set , 2010, Algorithmica.

[41]  Rolf Niedermeier,et al.  Fixed Parameter Algorithms for DOMINATING SET and Related Problems on Planar Graphs , 2002, Algorithmica.

[42]  Gerhard J. Woeginger,et al.  Exact (Exponential) Algorithms for the Dominating Set Problem , 2004, WG.

[43]  Vangelis Th. Paschos,et al.  Fast algorithms for min independent dominating set , 2013, Discret. Appl. Math..