Characterization of Sobolev spaces of arbitrary smoothness using nonstationary tight wavelet frames
暂无分享,去创建一个
Bin Han | Zuowei Shen | Zuowei Shen | B. Han
[1] A. Cohen,et al. Nonstationary subdivision schemes and multiresolution analysis , 1996 .
[2] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[3] Bin Han,et al. Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix , 2006, Adv. Comput. Math..
[4] A. Ron,et al. Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .
[5] Zuowei Shen,et al. PSEUDO-SPLINES, WAVELETS AND FRAMELETS , 2007 .
[6] Zuowei Shen. Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .
[7] B. Han. Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix , 2003 .
[8] A. Ron,et al. CAPlets : wavelet representations without wavelets , 2005 .
[9] R. Gribonval,et al. Bi-framelet systems with few vanishing moments characterize Besov spaces , 2004 .
[10] Bin Dong,et al. Linear independence of pseudo-splines , 2006 .
[11] I. Daubechies. Ten Lectures on Wavelets , 1992 .
[12] Bin Han,et al. Vector cascade algorithms and refinable function vectors in Sobolev spaces , 2003, J. Approx. Theory.
[13] Bin Dong,et al. Construction of Biorthogonal Wavelets from Pseudo-splines , 2022 .
[14] Bin Han,et al. Compactly Supported Symmetric C∞ Wavelets with Spectral Approximation Order , 2008, SIAM J. Math. Anal..
[15] C. Chui,et al. Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .
[16] N. Dyn,et al. Generalized Refinement Equations and Subdivision Processes , 1995 .
[17] I. Daubechies,et al. Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .
[18] R. Gribonval,et al. Tight wavelet frames in Lebesgue and Sobolev spaces , 2004 .
[19] Zuowei Shen,et al. Dual Wavelet Frames and Riesz Bases in Sobolev Spaces , 2009 .
[20] I. Selesnick. Smooth Wavelet Tight Frames with Zero Moments , 2001 .