Characterization of Sobolev spaces of arbitrary smoothness using nonstationary tight wavelet frames

In this paper we shall characterize Sobolev spaces of an arbitrary order of smoothness using nonstationary tight wavelet frames for L2(ℝ). In particular, we show that a Sobolev space of an arbitrary fixed order of smoothness can be characterized in terms of the weighted ℓ2-norm of the analysis wavelet coefficient sequences using a fixed compactly supported nonstationary tight wavelet frame in L2(ℝ) derived from masks of pseudosplines in [15]. This implies that any compactly supported nonstationary tight wavelet frame of L2(ℝ) in [15] can be properly normalized into a pair of dual frames in the corresponding pair of dual Sobolev spaces of an arbitrary fixed order of smoothness.

[1]  A. Cohen,et al.  Nonstationary subdivision schemes and multiresolution analysis , 1996 .

[2]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[3]  Bin Han,et al.  Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix , 2006, Adv. Comput. Math..

[4]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[5]  Zuowei Shen,et al.  PSEUDO-SPLINES, WAVELETS AND FRAMELETS , 2007 .

[6]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[7]  B. Han Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix , 2003 .

[8]  A. Ron,et al.  CAPlets : wavelet representations without wavelets , 2005 .

[9]  R. Gribonval,et al.  Bi-framelet systems with few vanishing moments characterize Besov spaces , 2004 .

[10]  Bin Dong,et al.  Linear independence of pseudo-splines , 2006 .

[11]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[12]  Bin Han,et al.  Vector cascade algorithms and refinable function vectors in Sobolev spaces , 2003, J. Approx. Theory.

[13]  Bin Dong,et al.  Construction of Biorthogonal Wavelets from Pseudo-splines , 2022 .

[14]  Bin Han,et al.  Compactly Supported Symmetric C∞ Wavelets with Spectral Approximation Order , 2008, SIAM J. Math. Anal..

[15]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .

[16]  N. Dyn,et al.  Generalized Refinement Equations and Subdivision Processes , 1995 .

[17]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[18]  R. Gribonval,et al.  Tight wavelet frames in Lebesgue and Sobolev spaces , 2004 .

[19]  Zuowei Shen,et al.  Dual Wavelet Frames and Riesz Bases in Sobolev Spaces , 2009 .

[20]  I. Selesnick Smooth Wavelet Tight Frames with Zero Moments , 2001 .