On affine invariance in the Beltrami framework for vision
暂无分享,去创建一个
[1] Ron Kimmel,et al. A general framework for low level vision , 1998, IEEE Trans. Image Process..
[2] Luc Van Gool,et al. An Extended Class of Scale-Invariant and Recursive Scale Space Filters , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[3] Guillermo Sapiro,et al. Invariant Geometric Evolutions of Surfaces and Volumetric Smoothing , 1997, SIAM J. Appl. Math..
[4] A. Polyakov. Quantum Geometry of Bosonic Strings , 1981 .
[5] Olivier Faugeras,et al. Three-Dimensional Computer Vision , 1993 .
[6] On projective plane curve evolution , 1996 .
[7] Yehoshua Y. Zeevi,et al. Representation of colored images by manifolds embedded in higher dimensional non-Euclidean space , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).
[8] Andrew P. Witkin,et al. Scale-Space Filtering , 1983, IJCAI.
[9] Ron Kimmel,et al. From High Energy Physics to Low Level Vision , 1997, Scale-Space.
[10] David A. Forsyth,et al. Invariant Descriptors for 3D Object Recognition and Pose , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[11] A. Bruckstein,et al. Invariant signatures for planar shape recognition under partial occlusion , 1993 .
[12] P. Lions,et al. Axioms and fundamental equations of image processing , 1993 .
[13] K. Reidemeister. Vorlesungen über Differentialgeometrie II , 1926 .
[14] Guillermo Sapiro,et al. Affine invariant detection: edges, active contours, and segments , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.