The enumeration of generalized Tamari intervals

Let v be a grid path made of north and east steps. The lattice Tam(v), based on all grid paths weakly above v and sharing the same endpoints as v , was introduced by Preville-Ratelle and Viennot (2016) and corresponds to the usual Tamari lattice in the case v = ( N E ) n . Our main contribution is that the enumeration of intervals in Tam(v), over all v of length n , is given by 2 ( 3 n + 3 ) ! ( n + 2 ) ! ( 2 n + 3 ) ! . This formula was first obtained by Tutte (1963) for the enumeration of non-separable planar maps. Moreover, we give an explicit bijection from these intervals in Tam(v) to non-separable planar maps.

[1]  Xavier Gérard Viennot,et al.  The enumeration of generalized Tamari intervals , 2017 .

[2]  F. Chapoton,et al.  Sur le nombre d'intervalles dans les treillis de Tamari , 2006 .

[3]  Guillaume Chapuy,et al.  The representation of the symmetric group on m-Tamari intervals , 2012, 1202.5925.

[4]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[5]  Frédéric Chapoton,et al.  Flows on Rooted Trees and the Menous-Novelli-Thibon Idempotents , 2014 .

[6]  Mireille Bousquet-Mélou,et al.  The Number of Intervals in the m-Tamari Lattices , 2011, Electron. J. Comb..

[7]  Viviane Pons,et al.  Two bijections on Tamari Intervals , 2013, 1311.4382.

[8]  X. Viennot,et al.  An extension of Tamari lattices , 2014, 1406.3787.

[9]  Gérard Viennot,et al.  Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..

[10]  Viviane Pons,et al.  Counting smaller trees in the Tamari order , 2012 .

[11]  François Bergeron,et al.  Algebraic Combinatorics and Coinvariant Spaces , 2009 .

[12]  Dominique Poulalhon,et al.  Optimal Coding and Sampling of Triangulations , 2003, Algorithmica.

[13]  Sergey Kitaev,et al.  Patterns in Permutations and Words , 2011, Monographs in Theoretical Computer Science. An EATCS Series.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Gilles Schaeffer,et al.  A Bijective Census of Nonseparable Planar Maps , 1998, J. Comb. Theory, Ser. A.

[16]  J. Hopcroft,et al.  Algorithm 447: efficient algorithms for graph manipulation , 1973, CACM.

[17]  Nicolas Bonichon,et al.  Intervals in Catalan lattices and realizers of triangulations , 2009, J. Comb. Theory, Ser. A.

[18]  F. Bergeron,et al.  Higher Trivariate Diagonal Harmonics via generalized Tamari Posets , 2011, 1105.3738.

[19]  Robert Cori,et al.  Monotone Triangles and 312 Pattern Avoidance , 2011, Electron. J. Comb..