All solutions to Thomas' family of Thue equations over imaginary quadratic number fields

We completely solve the family of relative Thue equations x 3 (t 1)x 2 y (t + 2)xy 2 y 3 = µ, where the parameter t, the root of unity µ and the solutions x and y are integers in the same imaginary quadratic number field. This is achieved using the hypergeometric method for |t| � 53 and Baker's method combined with a computer search using continued fractions for the remaining values of t.

[1]  Clemens Heuberger,et al.  Thomas' Family of Thue Equations Over Imaginary Quadratic Fields , 2002, J. Symb. Comput..

[2]  Attila Pethö,et al.  Simple families of Thue inequalities , 1999 .

[3]  István Gaál,et al.  On the resolution of relative Thue equations , 2002, Math. Comput..

[4]  Emery Thomas,et al.  Complete solutions to a family of cubic Diophantine equations , 1990 .

[5]  Clemens Heuberger,et al.  Automatic solution of families of Thue equations and an example of degree 8 , 2004, J. Symb. Comput..

[6]  Michel Laurent,et al.  Formes linéaires en deux logarithmes et déterminants d′interpolation , 1995 .

[7]  Volker Ziegler,et al.  A system of relative Pellian equations and a related family of relative Thue equations , 2005 .

[8]  Volker Ziegler On a family of cubics over imaginary quadratic fields , 2005, Period. Math. Hung..

[9]  M. Mignotte,et al.  Verification of a Conjecture of E. Thomas , 1993 .

[10]  Michael Pohst,et al.  Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.

[11]  Eduardo Friedman,et al.  Analytic formulas for the regulator of a number field , 1989 .

[12]  S. Lang Number Theory III , 1991 .

[13]  Axel Thue Über Annäherungswerte algebraischer Zahlen. , 1909 .

[14]  Guillaume Hanrot,et al.  Existence of Primitive Divisors of Lucas and Lehmer Numbers , 2001 .

[15]  V. Ziegler On a family of relative quartic Thue inequalities , 2006 .

[16]  Robert F. Tichy,et al.  Algebraic number theory and diophantine analysis : proceedings of the international conference, held in Graz, Austria, August 30 to September 5, 1998 , 2000 .

[17]  Guillaume Hanrot,et al.  Solving Thue Equations of High Degree , 1996 .

[18]  Paul Voutier,et al.  Complete Solution of the Diophantine EquationX2+1=dY4and a Related Family of Quartic Thue Equations☆ , 2014, 1401.5450.

[19]  Clemens Heuberger,et al.  On general families of parametrized Thue equations , 2000 .

[20]  M. Mignotte,et al.  A corollary to a theorem of Laurent-Mignotte-Nesterenko , 1998 .