Removal of H2S via an iron catalytic cycle and iron sulfide precipitation in the water column of dead end tributaries

[1]  D. Wieczorek,et al.  A METHOD FOR EXPOSING LOBSTERS TO MULTIPLE SIMULATED HABITAT BIOGEOCHEMICALS AND TEMPERATURES , 2009 .

[2]  G. Luther,et al.  Shift of algal community structure in dead end lagoons of the Delaware Inland Bays during seasonal anoxia , 2006 .

[3]  J. Morse,et al.  Dissolved Fe2+ and ∑H2S Behavior in Sediments Seasonally Overlain by Hypoxic-to-anoxic Waters as Determined by CSV Microelectrodes , 2006 .

[4]  R. Bush,et al.  Reduced inorganic sulfur speciation in drain sediments from acid sulfate soil landscapes. , 2006, Environmental science & technology.

[5]  L. Charlet,et al.  Surface chemistry of disordered mackinawite (FeS) , 2005 .

[6]  Michael J. Vanni,et al.  Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir , 2005 .

[7]  G. Luther,et al.  The roles of anoxia, H2S, and storm events in fish kills of dead-end canals of Delaware inland bays , 2004 .

[8]  Karen J. Murray,et al.  Lateral injection of oxygen with the Bosporus plume—fingers of oxidizing potential in the Black Sea , 2003 .

[9]  G. Luther,et al.  Iron and Sulfur Chemistry in a Stratified Lake: Evidence for Iron-Rich Sulfide Complexes , 2003 .

[10]  Lexia M. Valdes,et al.  Iron‐sulfur‐phosphorus cycling in the sediments of a shallow coastal bay: Implications for sediment nutrient release and benthic macroalgal blooms , 2002 .

[11]  G. Luther,et al.  The influence of sulfides on soluble organic-Fe(III) in anoxic sediment porewaters , 2002 .

[12]  N. Rabalais Nitrogen in Aquatic Ecosystems , 2002, Ambio.

[13]  S. Cary,et al.  A Continuous Flow Electrochemical Cell for Analysis of Chemical Species and Ions at High Pressure: Laboratory, Shipboard, and Hydrothermal Vent Results , 2002 .

[14]  J. Murray,et al.  Variations in the chemistry of the Black Sea on a time scale of decades (1960–1995) , 2001 .

[15]  B. Jørgensen,et al.  Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark) , 2001 .

[16]  D F Boesch,et al.  Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture. , 2001, Journal of environmental quality.

[17]  W. Wiseman,et al.  Hypoxia in the Gulf of Mexico. , 2001, Journal of environmental quality.

[18]  Clare E. Reimers,et al.  In Situ Deployment of Voltammetric, Potentiometric, and Amperometric Microelectrodes from a ROV To Determine Dissolved O2, Mn, Fe, S(-2), and pH in Porewaters , 1999 .

[19]  R. Herbert Nitrogen cycling in coastal marine ecosystems. , 1999, FEMS microbiology reviews.

[20]  G. Luther,et al.  Electrochemical Evidence for Pentasulfide Complexes with Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ , 1999 .

[21]  Bjørn Sundby,et al.  Interactions of manganese with the nitrogen cycle: Alternative pathways to dinitrogen , 1997 .

[22]  S. Theberge,et al.  Determination of the Electrochemical Properties of a Soluble Aqueous FeS Species Present in Sulfidic Solutions , 1997 .

[23]  G. Luther,et al.  Dissolved organic Fe(III) and Fe(II) complexes in salt marsh porewaters , 1996 .

[24]  G. Friederich,et al.  Oxidation-Reduction Environments: The Suboxic Zone in the Black Sea , 1995 .

[25]  J. J. Morgan,et al.  Aquatic Chemistry: Interfacial and Interspecies Processes , 1995 .

[26]  W. Yao,et al.  Oxidation of Hydrogen Sulfide by Mn(IV) and Fe(III) (Hydr)Oxides in Seawater , 1995 .

[27]  G. Luther,et al.  Seasonal cycling of Fe in saltmarsh sediments , 1995 .

[28]  Weiqing Zhou,et al.  Characterization of a transient +2 sulfur oxidation state intermediate from the oxidation of aqueous sulfide , 1995 .

[29]  G. Luther,et al.  Development of a Gold Amalgam Voltammetric Microelectrode for the Determination of Dissolved Fe, Mn, O2, and S(-II) in Porewaters of Marine and Freshwater Sediments. , 1995, Environmental science & technology.

[30]  Frank J. Millero,et al.  Investigation of metal sulfide complexes in sea water using cathodic stripping square wave voltammetry , 1994 .

[31]  F. Millero,et al.  Kinetics of Oxidation of Hydrogen Sulfide in Natural Waters , 1993 .

[32]  T. Ferdelman,et al.  Voltammetric characterization of iron(II) sulfide complexes in laboratory solutions and in marine waters and porewaters , 1993 .

[33]  B. Sulzberger,et al.  Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively , 1992 .

[34]  W. Davison The solubility of iron sulphides in synthetic and natural waters at ambient temperature , 1991, Aquatic Sciences.

[35]  G. Luther Pyrite synthesis via polysulfide compounds , 1991 .

[36]  B. L. Welsh,et al.  Mechanisms controlling summertime oxygen depletion in western Long Island Sound , 1991 .

[37]  F. Millero The oxidation of H2S in Framvaren Fjord , 1991 .

[38]  F. Millero,et al.  Effect of metals on the rate of the oxidation of H2S in seawater , 1989 .

[39]  H. Schmidt,et al.  Comments on the “Separation of dihydrogenpolysulfides (polysulfanes) using reversed-phase HPLC” reported by H. J. Möckel , 1989 .

[40]  T. Ferdelman,et al.  Evidence suggesting anaerobic oxidation of the bisulfide ion in Chesapeake Bay , 1988 .

[41]  G. Luther Pyrite oxidation and reduction - Molecular orbital theory considerations. [for geochemical redox processes] , 1987 .

[42]  F. Millero,et al.  Oxidation of H2S in seawater as a function of temperature, pH, and ionic strength. , 1987, Environmental science & technology.

[43]  J. Gavis,et al.  Sulfide, iron, manganese, and phosphate in the deep water of the Chesapeake Bay during anoxia , 1986 .

[44]  S. Sommer,et al.  Sedimentary iron monosulfides: Kinetics and mechanism of formation , 1981 .

[45]  W. Davison Supply of iron and manganese to an anoxic lake basin , 1981, Nature.

[46]  D. Hammond,et al.  Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis , 1979 .

[47]  D. Rickard Kinetics and mechanism of pyrite formation at low temperatures , 1975 .

[48]  L. Stookey Ferrozine---a new spectrophotometric reagent for iron , 1970 .

[49]  Walter J. Murphy,et al.  ADVANCES IN CHEMISTRY SERIES: Numbers 15 and 17 Demonstrate Rapidly Crowing Interest in Documentation; International Conference To Be Held in 1958 , 1956 .

[50]  G. Luther,et al.  Electrochemical Evidence for Metal Polysulfide Complexes: Tetrasulfide (S2–4) Reactions with Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ , 2001 .

[51]  G. Luther,et al.  Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes: polysulfides as a special case in sediments, microbial mats and hydrothermal vent waters. , 2001, Journal of environmental monitoring : JEM.

[52]  George W. Luther,et al.  Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation , 1997 .

[53]  R. Rosenberg,et al.  Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna , 1995 .

[54]  M. Schoonen,et al.  Chemistry of iron sulfides in sedimentary environments , 1995 .

[55]  F. Millero The oxidation of H2S in Black Sea waters , 1991 .

[56]  G. Luther,et al.  Sulfur speciation and sulfide oxidation in the water column of the Black Sea , 1991 .

[57]  B. Jørgensen,et al.  Sulfide oxidation in the anoxic Black Sea chemocline , 1991 .

[58]  William M. Landing,et al.  The biogeochemistry of manganese and iron in the Black Sea , 1991 .

[59]  W. Stumm Aquatic chemical kinetics : reaction rates of processes in natural waters , 1990 .

[60]  T. Church,et al.  The sedimentary flux of nutrients at a Delaware salt marsh site: A geochemical perspective , 1989 .

[61]  K. Nealson,et al.  Chemical and microbiological studies of sulfide‐mediated manganese reduction 1 , 1986 .

[62]  P. Brewer,et al.  COLORIMETRIC DETERMINATION OF MANGANESE IN ANOXIC WATERS1 , 1971 .