Sky view factor as a parameter in applied climatology - rapid estimation by the SkyHelios model

AbstractGraphic processors can be integrated in simulation models computing e.g. three-dimensional flow visual-ization or radiation estimation. Going a step further it is even possible to use modern graphics hardware asgeneral-purpose array processors. These ideas and approaches use a cheap mass production technology tosolve specific problems. This technology can be applied for m odelling climate conditions or climate-relevantparameters on the micro-scale or with respect to urban areas. To illustrate this we present the simulation ofthe continuous sky view factor (SVF), thus the calculation of the SVF for each point of a complex area.Digital elevation models (DEM), data concerning urban obstacles (OBS) or other digital files can serve as adata base in order to quantify relevant climatic conditions in urban and complex areas. The following benefitsare provided by the new model: (a) short computing time (b) short development time and (c) low costs dueto the use of open source frameworks. The application of the developed model will be helpful to estimateradiation fluxes and the mean radiant temperature in urban an d complex situations accurately, especially incombination with an urban microclimate model, e.g. the RayMan model.ZusammenfassungSchnelle Grafikprozessoren ko¨nnen in Simulationsmodelle integriert werden, z.B. dreidimensionaleStro¨mungsmodelle oder Modelle zu Strahlungsprozessen. Andere Ansa¨tze gehen einen Schritt weiter undverwenden moderne Graphikhardware als allgemeine Vektorrechner. In beiden Fa¨llen wird eine billigeMassentechnologie zur Lo¨sung von spezifischen Problemen v erwendet. Auch fu¨r Klimasimulationen oder zurBerechnung klimarelevanter Gro¨sen in urbanen Bereichen kann dieser Ansatz verfolgt werden. Beispielhaftwird die Modellierung des kontinuierlichen Sky View Factors (SVF), d. h. die Berechnung des SVF fu¨r jedenPunkt einer komplexen Umgebung, aufgezeigt. Als Datengrundlage ko¨nnen digitale Gela¨ndemodelle (DEM),Daten von urbanen Hindernissen (OBS) oder andere digitale Daten herangezogen werden, um zur Quan-tifizierung von relevanten klimatischen Bedingungen in urb anen Gebieten zu gelangen. Folgende Vorteileergeben sich aus dem entwickelten Modell: a) kurze Berechnungszeiten, b) kurze Entwicklungszeiten, c)niedrige Kosten durch die Verwendung von open-source-Bibliotheken. Das Modell wird hilfreich bei derBestimmung von Strahlungsflu¨ssen und der mittleren Strahl ungstemperatur in komplexen Umgebungen sein.Es fu¨gt sich gut in die bereits vorhandenen Mikroklimamodelle (z.B. RayMan) ein.

[1]  Paul J. Littlefair,et al.  Daylight, sunlight and solar gain in the urban environment , 2001 .

[2]  Olaf Matuschek,et al.  A mapping tool for climatological applications , 2011 .

[3]  Carlo Ratti,et al.  Raster Analysis of Urban Form , 2004 .

[4]  Douw G. Steyn,et al.  The calculation of view factors from fisheye‐lens photographs: Research note , 1980 .

[5]  Lee Chapman,et al.  Rapid determination of canyon geometry parameters for use in surface radiation budgets , 2001 .

[6]  M. Eriksson,et al.  Sky view factors in forest canopies calculated with IDRISI , 2001 .

[7]  Fredrik Lindberg,et al.  Computing continuous sky view factors using 3D urban raster and vector databases: comparison and application to urban climate , 2009 .

[8]  Andreas Kolb,et al.  GPU-based Dynamic Flow Visualization for Climate Research Applications , 2007, SimVis.

[9]  A. Matzarakis,et al.  Die thermische Komponente des Stadtklimas , 2001 .

[10]  C. S. B. Grimmond,et al.  Rapid methods to estimate sky‐view factors applied to urban areas , 2001 .

[11]  Daniel Souto Rodrigues,et al.  The 3dskyview extension: an urban geometry access tool in a geographical information system , 2003 .

[12]  E. Napoleon Getting to Know ArcView GIS: The Geographic Information System (GIS) for Everyone , 1999 .

[13]  Jacques Teller,et al.  Townscope II—A computer system to support solar access decision-making , 2001 .

[14]  R. Hall,et al.  A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission , 2001 .

[15]  M. Bruse,et al.  Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model , 1998 .

[16]  J. Chen,et al.  Measuring leaf area index of plant canopies with branch architecture , 1991 .

[17]  Helmut Mayer,et al.  Microclimate within Beech Stands – Part I: Photosynthetically Active Radiation , 2002, Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch.

[18]  Helmut Mayer,et al.  Microclimate within beech stands—part II: thermal conditions , 2004, European Journal of Forest Research.

[19]  H. Mayer,et al.  Modelling radiation fluxes in simple and complex environments—application of the RayMan model , 2007, International journal of biometeorology.

[20]  I. D. Watson,et al.  The determination of view-factors in urban canyons , 1984 .

[21]  James Demmel,et al.  LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs , 2008 .

[22]  Mark Oskin,et al.  Using modern graphics architectures for general-purpose computing: a framework and analysis , 2002, 35th Annual IEEE/ACM International Symposium on Microarchitecture, 2002. (MICRO-35). Proceedings..