Improving genome rearrangement phylogeny using sequence-style parsimony

The study of genome rearrangements, the evolutionary events that change the order and strandedness of genes within genomes, presents new opportunities for discoveries about deep evolutionary events. The best software so far, GRAPPA, solves breakpoint and inversion phylogenies by scoring each tree topology through iterative improvements of internal node gene orders. We find that the greedy hill-climbing approach means the accuracy is limited because of multiple local optima. To address this problem, we propose integration GRAPPA with MPME, a string encoding of gene adjacency relationships whose optimal internal node assignments can be determined globally in polynomial time, to provide better initializations for GRAPPA. In simulation studies, the new algorithm yields shorter tree lengths and better accuracy in phylogeny reconstruction.

[1]  David Sankoff,et al.  Multiple Genome Rearrangement and Breakpoint Phylogeny , 1998, J. Comput. Biol..

[2]  Alberto Caprara,et al.  On the Practical Solution of the Reversal Median Problem , 2001, WABI.

[3]  Jijun Tang,et al.  Scaling up accurate phylogenetic reconstruction from gene-order data , 2003, ISMB.

[4]  W. H. Day Computationally difficult parsimony problems in phylogenetic systematics , 1983 .

[5]  Jeffrey D. Palmer,et al.  Use of Chloroplast DNA Rearrangements in Reconstructing Plant Phylogeny , 1992 .

[6]  David Sankoff,et al.  The Median Problem for Breakpoints in Comparative Genomics , 1997, COCOON.

[7]  David Bryant A lower bound for the breakpoint phylogeny problem , 2004, J. Discrete Algorithms.

[8]  Tandy J. Warnow,et al.  Estimating true evolutionary distances between genomes , 2001, STOC '01.

[9]  W. Fitch Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology , 1971 .

[10]  David A. Bader,et al.  A New Implmentation and Detailed Study of Breakpoint Analysis , 2000, Pacific Symposium on Biocomputing.

[11]  Tandy J. Warnow,et al.  Steps toward accurate reconstructions of phylogenies from gene-order data , 2002, J. Comput. Syst. Sci..

[12]  Jijun Tang,et al.  Phylogenetic reconstruction from arbitrary gene-order data , 2004, Proceedings. Fourth IEEE Symposium on Bioinformatics and Bioengineering.

[13]  Timothy M. Collins,et al.  Deducing the pattern of arthropod phytogeny from mitochondrial DNA rearrangements , 1995, Nature.

[14]  David A. Bader,et al.  A Linear-Time Algorithm for Computing Inversion Distance between Signed Permutations with an Experimental Study , 2001, J. Comput. Biol..

[15]  Bernard M. E. Moret,et al.  Fast Phylogenetic Methods For Genome Rearrangement Evolution: An Empirical Study , 2002 .

[16]  David A. Bader,et al.  A fast linear-time algorithm for inversion distance with an experimental comparison , 2001 .

[17]  Breakpoint Phylogenies. , 1997, Genome informatics. Workshop on Genome Informatics.

[18]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[19]  Tandy J. Warnow,et al.  New approaches for reconstructing phylogenies from gene order data , 2001, ISMB.

[20]  P. Holland,et al.  Rare genomic changes as a tool for phylogenetics. , 2000, Trends in ecology & evolution.

[21]  Sudhir Kumar,et al.  A stepwise algorithm for finding minimum evolution trees. , 1996, Molecular biology and evolution.

[22]  Tao Liu,et al.  Inversion Medians Outperform Breakpoint Medians in Phylogeny Reconstruction from Gene-Order Data , 2002, WABI.

[23]  Linda A. Raubeson,et al.  Chloroplast DNA Evidence on the Ancient Evolutionary Split in Vascular Land Plants , 1992, Science.

[24]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[25]  Bernard M. E. Moret,et al.  An Empirical Comparison of Phylogenetic Methods on Chloroplast Gene Order Data in Campanulaceae , 2000 .