Engineering Gapless Edge States from Antiferromagnetic Chern Homobilayer.

We put forward that stacked Chern insulators with opposite chiralities offer a strategy to achieve gapless helical edge states in two dimensions. We employ the square lattice as an example and elucidate that the gapless chiral and helical edge states emerge in the monolayer and antiferromagnetically stacked bilayer, characterized by Chern number C=-1 and spin Chern number CS=-1, respectively. Particularly, for a topological phase transition to the normal insulator in the stacked bilayer, a band gap closing and reopening procedure takes place accompanied by helical edge states disappearing, where the Chern insulating phase in the monolayer vanishes at the same time. Moreover, EuO is revealed as a suitable candidate for material realization. This work is not only valuable to the research of the quantum anomalous Hall effect but also offers a favorable platform to realize magnetic topologically insulating materials for spintronics applications.

[1]  J. Li,et al.  Electrically Tunable Topological Phase Transition in van der Waals Heterostructures. , 2023, Nano letters.

[2]  Zhuhua Zhang,et al.  Robust Quantum Anomalous Hall States in Monolayer and Few-Layer TiTe. , 2022, Nano letters.

[3]  Qihang Liu,et al.  Observation of Magnetism-Induced Topological Edge State in Antiferromagnetic Topological Insulator MnBi4Te7. , 2022, ACS nano.

[4]  L. Molenkamp,et al.  Quantized spin Hall conductance in a magnetically doped two dimensional topological insulator , 2021, Nature Communications.

[5]  Hao Li,et al.  Direct visualization of edge state in even-layer MnBi2Te4 at zero magnetic field , 2021, Nature communications.

[6]  Jingwen Ma,et al.  Observation of chiral edge states in gapped nanomechanical graphene , 2021, Science Advances.

[7]  M. Fuhrer,et al.  Helical Edge Transport in Millimeter-Scale Thin Films of Na3Bi. , 2020, Nano letters.

[8]  Yugui Yao,et al.  Tailoring Dzyaloshinskii–Moriya interaction in a transition metal dichalcogenide by dual-intercalation , 2020, Nature Communications.

[9]  Kenji Watanabe,et al.  Correlated electronic phases in twisted bilayer transition metal dichalcogenides , 2020, Nature Materials.

[10]  J. Zhu,et al.  Intrinsic quantized anomalous Hall effect in a moiré heterostructure , 2019, Science.

[11]  Yoshinori Tokura,et al.  Magnetic topological insulators , 2019, Nature Reviews Physics.

[12]  T. Taniguchi,et al.  Maximized electron interactions at the magic angle in twisted bilayer graphene , 2018, Nature.

[13]  M. Blanco-Rey,et al.  Prediction and observation of an antiferromagnetic topological insulator , 2018, Nature.

[14]  Bing-Lin Gu,et al.  Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials , 2018, Science Advances.

[15]  D. Graf,et al.  Tuning superconductivity in twisted bilayer graphene , 2018, Science.

[16]  J. Chu,et al.  Evidence for a strain-tuned topological phase transition in ZrTe5 , 2018, Science Advances.

[17]  Satoshi Okamoto,et al.  Stacking-Dependent Magnetism in Bilayer CrI3. , 2018, Nano letters.

[18]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[19]  R. Wu,et al.  Magnetizing topological surface states of Bi2Se3 with a CrI3 monolayer , 2018, Science Advances.

[20]  Y. Tokura,et al.  Quantized chiral edge conduction on domain walls of a magnetic topological insulator , 2017, Science.

[21]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[22]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[23]  A. Lorke,et al.  Quantum confinement in EuO heterostructures , 2016 .

[24]  Feng Liu,et al.  Topological edge states in a high-temperature superconductor FeSe/SrTiO3(001) film. , 2016, Nature materials.

[25]  Q. Xue,et al.  Thickness Dependence of the Quantum Anomalous Hall Effect in Magnetic Topological Insulator Films , 2016, Advanced materials.

[26]  Xiao-Liang Qi,et al.  The Quantum Anomalous Hall Effect: Theory and Experiment , 2016 .

[27]  Qian Niu,et al.  Topological phases in two-dimensional materials: a review , 2015, Reports on progress in physics. Physical Society.

[28]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[29]  Xi Dai,et al.  Quantum anomalous Hall effect and related topological electronic states , 2015, 1508.02967.

[30]  M. Weinert,et al.  Tuning Dirac states by strain in the topological insulator Bi2Se3 , 2014, Nature Physics.

[31]  Peng Wei,et al.  Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator. , 2013, Nature materials.

[32]  Wei Zhang,et al.  Quantized Anomalous Hall Effect in Magnetic Topological Insulators , 2010, Science.

[33]  J. Moodera,et al.  Thickness dependence of ferromagnetic- and metal-insulator transition in thin EuO films , 2009 .

[34]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..