Multi-oscillations of a bubble in a compressible liquid near a rigid boundary

Abstract Bubble dynamics near a rigid boundary are associated with wide and important applications in cavitation erosion in many industrial systems and medical ultrasonics. This classical problem is revisited with the following two developments. Firstly, computational studies on the problem have commonly been based on an incompressible fluid model, but the compressible effects are essential in this phenomenon. Consequently, a bubble usually undergoes significantly damped oscillation in practice. In this paper this phenomenon will be modelled using weakly compressible theory and a modified boundary integral method for an axisymmetric configuration, which predicts the damped oscillation. Secondly, the computational studies so far have largely been concerned with the first cycle of oscillation. However, a bubble usually oscillates for a few cycles before it breaks into much smaller ones. Cavitation erosion may be associated with the recollapse phase when the bubble is initiated more than the maximum bubble radius away from the boundary. Both the first and second cycles of oscillation will be modelled. The toroidal bubble formed towards the end of the collapse phase is modelled using a vortex ring model. The repeated topological changes of the bubble are traced from a singly connected to a doubly connected form, and vice versa. This model considers the energy loss due to shock waves emitted at minimum bubble volumes during the beginning of the expansion phase and around the end of the collapse phase. It predicts damped oscillations, where both the maximum bubble radius and the oscillation period reduce significantly from the first to second cycles of oscillation. The damping of the bubble oscillation is alleviated by the existence of the rigid boundary and reduces with the standoff distance between them. Our computations correlate well with the experimental data (Philipp & Lauterborn, J. Fluid Mech., vol. 361, 1998, pp. 75–116) for both the first and second cycles of oscillation. We have successively reproduced the bubble ring in direct contact with the rigid boundary at the end of the second collapse phase, a phenomenon that was suggested to be one of the major causes of cavitation erosion by experimental studies.

[1]  M. Kornfeld,et al.  On the Destructive Action of Cavitation , 1944 .

[2]  John R. Blake,et al.  Cavitation Bubbles Near Boundaries , 1987 .

[3]  Evert Klaseboer,et al.  Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure , 2005, Journal of Fluid Mechanics.

[4]  K. Yeo,et al.  Strong interaction between a buoyancy bubble and a free surface , 1994 .

[5]  Gretar Tryggvason,et al.  The collapse of a cavitation bubble in shear flows—A numerical study , 1995 .

[6]  Andrea Prosperetti,et al.  Bubble dynamics in a compressible liquid. Part 1. First-order theory , 1986, Journal of Fluid Mechanics.

[7]  K. Heme,et al.  AN EXPERIMENTAL AND NUMERICAL INVESTIGATION , 1983 .

[8]  W. Lauterborn,et al.  Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall , 2003, Journal of Fluid Mechanics.

[9]  Cameron Tropea,et al.  Experimental and Numerical Investigations , 2006 .

[10]  Kester Nahen,et al.  Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus , 2001, Journal of Fluid Mechanics.

[11]  Eric Johnsen,et al.  Numerical simulations of non-spherical bubble collapse , 2009, Journal of Fluid Mechanics.

[12]  A. T. Ellis,et al.  On the Mechanism of Cavitation Damage , 1955, Journal of Fluids Engineering.

[13]  J. Duncan,et al.  On the interaction of a collapsing cavity and a compliant wall , 1991, Journal of Fluid Mechanics.

[14]  Michael L. Calvisi,et al.  Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 2. Reflected shock intensifies non-spherical cavitation collapse , 2008, Journal of Fluid Mechanics.

[15]  A. Shima,et al.  Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse , 1986, Journal of Fluid Mechanics.

[16]  Andrew B. Wardlaw,et al.  Fluid-structure interaction mechanisms for close-in explosions , 2000 .

[17]  Thomas S. Lundgren,et al.  Vortex ring bubbles , 1991, Journal of Fluid Mechanics.

[18]  A. Szeri,et al.  Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 1. Consequences of interference between incident and reflected waves , 2008, Journal of Fluid Mechanics.

[19]  G. Taylor THE VERTICAL MOTION OF A SPHERICAL BUBBLE AND THE PRESSURE SURROUNDING IT , 1943 .

[20]  Sheguang Zhang,et al.  On the nonspherical collapse and rebound of a cavitation bubble , 1994 .

[21]  Sheguang Zhang,et al.  The final stage of the collapse of a cavitation bubble near a rigid wall , 1993, Journal of Fluid Mechanics.

[22]  F. De Gregorio,et al.  A numerical and experimental study of , 2008 .

[23]  Ronald A. Roy,et al.  Applications of Acoustics and Cavitation to , 2008 .

[24]  O. Voinov A calculation of the parameters of the high-speed jet formed in the collapse of a bubble , 1979 .

[25]  W. Lauterborn,et al.  Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary , 1975, Journal of Fluid Mechanics.

[26]  G. Haar The Acoustic Bubble , 1996 .

[27]  Bruno Piar,et al.  Inertial dynamics of air bubbles crossing a horizontal fluid–fluid interface , 2012, Journal of Fluid Mechanics.

[28]  G. S. Keen,et al.  The final stage of the collapse of a cavitation bubble close to a rigid boundary , 2002, Physics of Fluids.

[29]  W. Xi Numerical simulation of violent bubble motion , 2004 .

[30]  Yuan Xiang Yang,et al.  Dynamic features of a laser-induced cavitation bubble near a solid boundary. , 2013, Ultrasonics sonochemistry.

[31]  A. Wardlaw,et al.  Fluid-structure Coupling Methodology For Undersea Weapons , 2003 .

[32]  S. Otto,et al.  Jets in bubbles , 2004 .

[33]  Qian Wang,et al.  Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave , 2010, Journal of Fluid Mechanics.

[34]  Georges L. Chahine,et al.  Experimental and Numerical Investigation of Single Bubble Dynamics in a Two-Phase Bubbly Medium , 2011 .

[35]  A. Prosperetti,et al.  Bubble Dynamics and Cavitation , 1977 .

[36]  Brian D. Storey,et al.  Heat and mass transfer during the violent collapse of nonspherical bubbles , 2003 .

[37]  C. Brennen Cavitation and Bubble Dynamics , 1995 .

[38]  A. Prosperetti,et al.  Vapour bubble collapse in isothermal and non-isothermal liquids , 2008, Journal of Fluid Mechanics.

[39]  Stephen D. Heister,et al.  Analytical formulas for the velocity field induced by an infinitely thin vortex ring , 2004 .

[40]  J. D. Wilde,et al.  Simulation of the effect of viscosity on jet penetration into a single cavitating bubble , 2009 .

[41]  Bachok M. Taib,et al.  Transient cavities near boundaries Part 2. Free surface , 1987, Journal of Fluid Mechanics.

[42]  Stéphane Popinet,et al.  Bubble collapse near a solid boundary: a numerical study of the influence of viscosity , 2002, Journal of Fluid Mechanics.

[43]  A. Vogel,et al.  Shock Wave Emission by Laser Generated Bubbles , 2013 .

[44]  Robert Mettin,et al.  Nonlinear Bubble Dynamics , 1999 .

[45]  T. L. Geers,et al.  An integrated wave-effects model for an underwater explosion bubble. , 2002, The Journal of the Acoustical Society of America.

[46]  A. Prosperetti,et al.  A numerical method for the dynamics of non-spherical cavitation bubbles , 1982 .

[47]  Werner Lauterborn,et al.  Physics of bubble oscillations , 2010 .

[48]  Timothy J. Pedley,et al.  The toroidal bubble , 1968, Journal of Fluid Mechanics.

[49]  James J. Feng,et al.  An arbitrary Lagrangian-Eulerian method for simulating bubble growth in polymer foaming , 2007, J. Comput. Phys..

[50]  Ronald A. Roy,et al.  Applications of Acoustics and Cavitation to Noninvasive Therapy and Drug Delivery , 2008 .

[51]  Reginald Birngruber,et al.  Intraocular Nd:YAG laser surgery: laser-tissue interaction, damage range, and reduction of collateral effects , 1990 .

[52]  J. R. Blake,et al.  Boundary integral methods applied to cavitation bubble dynamics , 1984 .

[53]  J. Duncan,et al.  ON THE INTERACTION BETWEEN A BUBBLE AND A SUBMERGED COMPLIANT STRUCTURE , 1996 .

[54]  T. Phillips,et al.  The influence of viscoelasticity on the collapse of cavitation bubbles near a rigid boundary , 2012 .

[55]  G. Chahine,et al.  Oscillation and Collapse of a Cavitation Bubble in the Vicinity of a Two-Liquid Interface , 1980 .

[56]  Joseph B. Keller,et al.  Damping of Underwater Explosion Bubble Oscillations , 1956 .

[57]  T. Dubinsky,et al.  High-intensity focused ultrasound: current potential and oncologic applications. , 2008, AJR. American journal of roentgenology.

[58]  M. L. Calvisi,et al.  Interaction of lithotripter shockwaves with single inertial cavitation bubbles , 2007, Journal of Fluid Mechanics.

[59]  Chen-Yen Hung,et al.  Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries , 2010, Journal of Fluid Mechanics.

[60]  Eric Johnsen,et al.  Shock-induced collapse of a gas bubble in shockwave lithotripsy. , 2008, The Journal of the Acoustical Society of America.

[61]  Y. Matsumoto,et al.  Collapse of micrometer-sized cavitation bubbles near a rigid boundary , 2012 .

[62]  J. Best The rebound of toroidal bubbles , 1994 .

[63]  Randy S. Lagumbay,et al.  Acoustic-wave effects in violent bubble collapse , 2012 .

[64]  Peizhen Zhang,et al.  Doubly Asymptotic Approximations for Submerged Structures With Internal Fluid Volumes: Evaluation , 1994 .

[65]  C. Hsiao,et al.  Numerical and Experimental Study of the Interaction of a Spark-Generated Bubble and a Vertical Wall , 2012 .

[66]  Qian Wang,et al.  Non-spherical bubble dynamics of underwater explosions in a compressible fluid , 2013 .

[67]  A. Zhang,et al.  Numerical simulation of bubble dynamics in an elastic vessel , 2013, The European physical journal. E, Soft matter.

[68]  Jacques Magnaudet,et al.  An interface-capturing method for incompressible two-phase flows. Validation and application to bubble dynamics , 2007 .

[69]  John R. Blake,et al.  Collapsing cavities, toroidal bubbles and jet impact , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[70]  Qian Wang,et al.  Nonlinear interaction between gas bubble and free surface , 1996 .

[71]  Qian Wang,et al.  The Evolution of a Gas Bubble Near an Inclined Wall , 1998 .

[72]  Tow Chong Chong,et al.  Laser-induced cavitation bubbles for cleaning of solid surfaces , 2004 .

[73]  Yi Sui,et al.  Bubble dynamics in a compressible liquid in contact with a rigid boundary , 2015, Interface Focus.

[74]  C. Hsiao,et al.  Numerical and Experimental Study of the Interaction of a Spark-Generated Bubble and a Vertical Wall , 2010 .

[75]  J. Kennedy,et al.  High-intensity Focused Ultrasound Principles, Current Uses, and Potential for the Future , 2006, Ultrasound quarterly.

[76]  Q. Wang,et al.  Non-spherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave , 2011, Journal of Fluid Mechanics.

[77]  J. Best The formation of toroidal bubbles upon the collapse of transient cavities , 1993, Journal of Fluid Mechanics.

[78]  Werner Lauterborn,et al.  Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary , 1989, Journal of Fluid Mechanics.

[79]  A. T. Ellis,et al.  On the Mechanism of Cavitation Damage by Nonhemispherical Cavities Collapsing in Contact With a Solid Boundary , 1961 .

[80]  W Lauterborn,et al.  Cavitation bubble dynamics. , 1997, Ultrasonics sonochemistry.

[81]  Andrea Prosperetti,et al.  Bubble dynamics in a compressible liquid. Part 2. Second-order theory , 1987, Journal of Fluid Mechanics.

[82]  Milton S. Plesset,et al.  Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary , 1971, Journal of Fluid Mechanics.

[83]  J. Blake,et al.  Transient cavities near boundaries. Part 1. Rigid boundary , 1986, Journal of Fluid Mechanics.

[84]  L. Rayleigh VIII. On the pressure developed in a liquid during the collapse of a spherical cavity , 1917 .

[85]  Evert Klaseboer,et al.  On the boundary integral method for the rebounding bubble , 2007, Journal of Fluid Mechanics.

[86]  Jinsong Hua,et al.  Numerical simulation of bubble rising in viscous liquid , 2007, J. Comput. Phys..

[87]  Q. X. Wang,et al.  Ultrasonic cavitation near a tissue layer , 2013, Journal of Fluid Mechanics.

[88]  Qian Wang,et al.  Vortex ring modelling of toroidal bubbles , 2005 .

[89]  R. Lindsay On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity (1917) , 1970 .

[90]  D. Legendre,et al.  Reversal of the lift force on an oblate bubble in a weakly viscous linear shear flow , 2009, Journal of Fluid Mechanics.

[91]  R. Hawes,et al.  High-intensity focused ultrasound. , 1994, Gastrointestinal endoscopy clinics of North America.

[92]  W. Lauterborn,et al.  Cavitation erosion by single laser-produced bubbles , 1998, Journal of Fluid Mechanics.

[93]  Timothy G. Leighton,et al.  Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water , 2008, Journal of Fluid Mechanics.

[94]  J Brian Fowlkes,et al.  Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney. , 2006, The Journal of urology.