ALMA 1.3 mm Map of the HD 95086 System

Planets and minor bodies such as asteroids, Kuiper-belt objects and comets are integral components of a planetary system. Interactions among them leave clues about the formation process of a planetary system. The signature of such interactions is most prominent through observations of its debris disk at millimeter wavelengths where emission is dominated by the population of large grains that stay close to their parent bodies. Here we present ALMA 1.3 mm observations of HD 95086, a young early-type star that hosts a directly imaged giant planet b and a massive debris disk with both asteroid- and Kuiper-belt analogs. The location of the Kuiper-belt analog is resolved for the first time. The system can be depicted as a broad ($\Delta R/R \sim$0.84), inclined (30\arcdeg$\pm$3\arcdeg) ring with millimeter emission peaked at 200$\pm$6 au from the star. The 1.3 mm disk emission is consistent with a broad disk with sharp boundaries from 106$\pm$6 to 320$\pm$20 au with a surface density distribution described by a power law with an index of --0.5$\pm$0.2. Our deep ALMA map also reveals a bright source located near the edge of the ring, whose brightness at 1.3 mm and potential spectral energy distribution are consistent with it being a luminous star-forming galaxy at high redshift. We set constraints on the orbital properties of planet b assuming co-planarity with the observed disk.

[1]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[2]  J. Augereau,et al.  The Northern arc of ε Eridani’s Debris Ring as seen by ALMA , 2017, 1705.01560.

[3]  J. A. Eisner,et al.  SPECTRAL ENERGY DISTRIBUTIONS OF ACCRETING PROTOPLANETS , 2015, 1502.05412.

[4]  L. Testi,et al.  AN ATCA SURVEY OF DEBRIS DISKS AT 7 MILLIMETERS , 2015, 1510.03513.

[5]  D. Elbaz,et al.  Mid-Infrared Spectral Diagnosis of Submillimeter Galaxies , 2007, 0711.1553.

[6]  S. Kenyon,et al.  FORMATION OF SUPER-EARTH MASS PLANETS AT 125–250 AU FROM A SOLAR-TYPE STAR , 2015, 1501.05659.

[7]  G. Rieke,et al.  A Complete ALMA Map of the Fomalhaut Debris Disk , 2017, 1705.05867.

[8]  G. Rieke,et al.  A TREND BETWEEN COLD DEBRIS DISK TEMPERATURE AND STELLAR TYPE: IMPLICATIONS FOR THE FORMATION AND EVOLUTION OF WIDE-ORBIT PLANETS , 2013, Proceedings of the International Astronomical Union.

[9]  Zhaohuan Zhu,et al.  ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES , 2014, 1408.6554.

[10]  Sarah T. Stewart,et al.  COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. I. OUTCOME REGIMES AND SCALING LAWS , 2011, 1106.6084.

[11]  D. Jewitt,et al.  Discovery of the candidate Kuiper belt object 1992 QB1 , 1993, Nature.

[12]  M. Wyatt,et al.  Debris froms giant impacts between planetary embryos at large orbital radii , 2014, 1403.1888.

[13]  S. Wolf,et al.  Observing planet-disk interaction in debris disks , 2012, 1206.3154.

[14]  J. Szulágyi,et al.  A RESOLVED DEBRIS DISK AROUND THE CANDIDATE PLANET-HOSTING STAR HD 95086 , 2013, 1309.1675.

[15]  F. J. Low,et al.  DISCOVERY OF A SHELL AROUND ALPHA-LYRAE , 1984 .

[16]  Christine H. Chen,et al.  A SPITZER MIPS STUDY OF 2.5–2.0 M☉ STARS IN SCORPIUS-CENTAURUS , 2012, 1207.3415.

[17]  Jason J. Wang,et al.  Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager , 2015, Science.

[18]  M. C. Wyatt,et al.  RESONANT TRAPPING OF PLANETESIMALS BY PLANET MIGRATION: DEBRIS DISK CLUMPS AND VEGA'S SIMILARITY TO THE SOLAR SYSTEM , 2003 .

[19]  K. Y. L. Su,et al.  ACCEPTED FOR PUBLICATION IN APJ. Preprint typeset using LATEX style emulateapj v. 2/19/04 THE DEBRIS DISK AROUND HR 8799 , 2022 .

[20]  Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk , 2014, Science.

[21]  Brett Gladman,et al.  Dynamics of Systems of Two Close Planets , 1993 .

[22]  R. Brahm,et al.  Resolving the planetesimal belt of HR 8799 with ALMA , 2016, 1603.04853.

[23]  Science,et al.  Kuiper belts around nearby stars , 2010, 1005.3215.

[24]  William Dent,et al.  CONSTRAINING THE PLANETARY SYSTEM OF FOMALHAUT USING HIGH-RESOLUTION ALMA OBSERVATIONS , 2012, 1204.0007.

[25]  Jason J. Wang,et al.  CONSTRAINTS ON THE ARCHITECTURE OF THE HD 95086 PLANETARY SYSTEM WITH THE GEMINI PLANET IMAGER , 2016, 1604.05139.

[26]  D. Narayanan,et al.  Dusty Star Forming Galaxies at High Redshift , 2014, 1402.1456.

[27]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[28]  J. Carpenter,et al.  ALMA OBSERVATIONS OF THE DEBRIS DISK AROUND THE YOUNG SOLAR ANALOG HD 107146 , 2014, 1410.8265.

[29]  Julien H. Girard,et al.  DISCOVERY OF A PROBABLE 4–5 JUPITER-MASS EXOPLANET TO HD 95086 BY DIRECT IMAGING , 2013, 1305.7428.

[30]  S. Wolf,et al.  Collisions and drag in debris discs with eccentric parent belts , 2017, 1704.08085.

[31]  Tiffany Meshkat,et al.  HD 106906 b: A PLANETARY-MASS COMPANION OUTSIDE A MASSIVE DEBRIS DISK , 2013, 1312.1265.

[32]  Paul S. Smith,et al.  DEBRIS DISTRIBUTION IN HD 95086—A YOUNG ANALOG OF HR 8799 , 2014, 1412.0167.

[33]  J. Graham,et al.  MILLIMETER EMISSION STRUCTURE IN THE FIRST ALMA IMAGE OF THE AU Mic DEBRIS DISK , 2012, 1211.5148.

[34]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[35]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[36]  S. Morrison,et al.  PLANETARY CHAOTIC ZONE CLEARING: DESTINATIONS AND TIMESCALES , 2014, 1411.1378.

[37]  Thomas L. Hayward,et al.  Mid-infrared images of beta Pictoris and the possible role of planetesimal collisions in the central disk. , 2005, Nature.

[38]  S. Serjeant,et al.  SONS: The JCMT legacy survey of debris discs in the submillimetre , 2017, 1706.01218.

[39]  S. Lubow,et al.  Tidal truncation of circumplanetary discs , 2010, 1012.4102.

[40]  Dmitry Savransky,et al.  SPECTROSCOPIC CHARACTERIZATION OF HD 95086 b WITH THE GEMINI PLANET IMAGER , 2016, 1604.01411.

[41]  S. Kenyon,et al.  MAKING PLANET NINE: A SCATTERED GIANT IN THE OUTER SOLAR SYSTEM , 2016, 1603.08010.

[42]  D. Elbaz,et al.  VLA AND ALMA IMAGING OF INTENSE GALAXY-WIDE STAR FORMATION IN z ∼ 2 GALAXIES , 2016, The Astrophysical Journal.

[43]  J. Francesco,et al.  ALMA OBSERVATIONS OF THE DEBRIS DISK OF SOLAR ANALOG τ CETI , 2016, 1607.02513.

[44]  J. Augereau,et al.  Exocometary gas structure, origin and physical properties around β Pictoris through ALMA CO multitransition observations , 2016, 1609.06718.

[45]  K. Y. L. Su,et al.  FURTHER EVIDENCE OF THE PLANETARY NATURE OF HD 95086 b FROM GEMINI/NICI H-BAND DATA , 2013, 1309.0543.

[46]  A. Fontana,et al.  ALMA constraints on the faint millimetre source number counts and their contribution to the cosmic infrared background , 2015, 1502.00640.

[47]  D. Wilner,et al.  CONSTRAINTS ON PLANETESIMAL COLLISION MODELS IN DEBRIS DISKS , 2016, 1603.05644.

[48]  Michiel Lambrechts,et al.  Rapid growth of gas-giant cores by pebble accretion , 2012, 1205.3030.

[49]  W. Holland,et al.  ALMA observations of the multiplanet system 61 Vir: what lies outside super-Earth systems? , 2017, 1705.01944.

[50]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[51]  S. Morrison,et al.  ORBITAL STABILITY OF MULTI-PLANET SYSTEMS: BEHAVIOR AT HIGH MASSES , 2015, 1604.01037.

[52]  E. Nesvold,et al.  APOCENTER GLOW IN ECCENTRIC DEBRIS DISKS: IMPLICATIONS FOR FOMALHAUT AND ϵ ERIDANI , 2016, 1607.06798.

[53]  F. P. Schloerb,et al.  Early science with the Large Millimetre Telescope: Deep LMT/AzTEC millimetre observations of ϵ Eridani and its surroundings , 2016 .

[54]  K. Stapelfeldt,et al.  ASTEROID BELTS IN DEBRIS DISK TWINS: VEGA AND FOMALHAUT , 2013, 1301.1331.