An implicit gradient formulation for microplane Drucker-Prager plasticity

Abstract A microplane plasticity model is regularized by an implicit gradient enhancement. The plasticity model is defined by a Drucker-Prager yield criterion and within the thermodynamically consistent framework of the microplane theory. Thus, the advantages of both the microplane approach and the pressure sensitive Drucker-Prager yield criterion are combined within a nonlocal implicit gradient type method. The microplane approach allows for the description of induced anisotropy which is observed in the failure of quasi-brittle materials. Based on the volumetric–deviatoric split, a microplane version of the Drucker-Prager yield function is defined. The implicit gradient enhancement is employed to remedy the pathological mesh sensitivity. It yields the advantage of being strongly nonlocal and equivalent to the integral-type models, while it preserves the mathematical locality of the equations and keeps the implementation straightforward within the classical finite element method. The proposed formulation is implemented in a 3D finite element code. The stress return mapping algorithm and the consistent tangent are derived. Numerical examples are simulated to demonstrate the capability of the proposed method to regularize the model and eliminate the pathological mesh dependency.

[1]  G. N. Pande,et al.  Description of soil anisotropy based on multi‐laminate framework , 2001 .

[2]  Giang D. Nguyen,et al.  Non‐local damage modelling of concrete: a procedure for the determination of model parameters , 2007 .

[3]  Ferhun C. Caner,et al.  Microplane Model M4 for Concrete. I: Formulation with Work-Conjugate Deviatoric Stress , 2000 .

[4]  Zdenek P. Bazant,et al.  Nonlocal microplane model with strain-softening yield limits , 2004 .

[5]  F. M. Andrade Pires,et al.  A Ductile Damage Nonlocal Model of Integral-type at Finite Strains: Formulation and Numerical Issues , 2011 .

[6]  Ekkehard Ramm,et al.  An anisotropic gradient damage model for quasi-brittle materials , 2000 .

[7]  Zdeněk P. Bažant,et al.  Three-dimensional constitutive model for shape memory alloys based on microplane model , 2002 .

[8]  Chung-Souk Han,et al.  On couple-stress elasto-plastic constitutive frameworks for glassy polymers , 2016 .

[9]  Giovanni Di Luzio,et al.  A symmetric over-nonlocal microplane model M4 for fracture in concrete , 2007 .

[10]  E. Verron Questioning numerical integration methods for microsphere (and microplane) constitutive equations , 2015 .

[11]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[12]  Matti Ristinmaa,et al.  FE-formulation of a nonlocal plasticity theory , 1996 .

[13]  Joško Ožbolt,et al.  NUMERICAL SMEARED FRACTURE ANALYSIS: NONLOCAL MICROCRACK INTERACTION APPROACH , 1996 .

[14]  Gilles Pijaudier-Cabot,et al.  Measurement of Characteristic Length of Nonlocal Continuum , 1989 .

[15]  George Z. Voyiadjis,et al.  A physically based gradient plasticity theory , 2006 .

[16]  M. Cudny,et al.  On the modelling of anisotropy and destructuration of soft clays within the multi-laminate framework , 2004 .

[17]  Milan Jirásek,et al.  Localization properties of strain-softening gradient plasticity models. Part II: Theories with gradients of internal variables , 2009 .

[18]  L. H. Poh,et al.  Gradient-enhanced softening material models , 2009 .

[19]  Rhj Ron Peerlings,et al.  Interpolation requirements for implicit gradient-enhanced continuum damage models , 2003 .

[20]  Somsak Swaddiwudhipong,et al.  Over-nonlocal gradient enhanced plastic-damage model for concrete , 2009 .

[21]  J. Shao,et al.  A refined micromechanical damage–friction model with strength prediction for rock-like materials under compression , 2015 .

[22]  Ekkehard Ramm,et al.  A comparison of damage models formulated on different material scales , 2003 .

[23]  J. Shao,et al.  A micromechanics-based elastoplastic damage model for granular materials at low confining pressure , 2010 .

[24]  D. Hordijk Local approach to fatigue of concrete , 1991 .

[25]  Shawn A. Chester,et al.  A large-deformation gradient theory for elastic–plastic materials: Strain softening and regularization of shear bands , 2012 .

[26]  Z. Bažant,et al.  Nonlocal microplane model for fracture, damage, and size effect in structures , 1990 .

[27]  G. N. Pande,et al.  Multi‐laminate model of clays—a numerical evaluation of the influence of rotation of the principal stress axes , 1983 .

[28]  Rhj Ron Peerlings,et al.  An implicit gradient plasticity-damage theory for predicting size effects in hardening and softening , 2012 .

[29]  Byung H. Oh,et al.  Microplane Model for Progressive Fracture of Concrete and Rock , 1985 .

[30]  Rhj Ron Peerlings,et al.  An implicit tensorial gradient plasticity model - formulation and comparison with a scalar gradient model , 2011 .

[31]  Ian H. Sloan,et al.  Extremal Systems of Points and Numerical Integration on the Sphere , 2004, Adv. Comput. Math..

[32]  Marc G. D. Geers,et al.  Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour , 2003 .

[33]  M. Curbach,et al.  Dynamische Eigenschaften von Beton im Experiment und in der Simulation , 2016 .

[34]  Michael Kaliske,et al.  Regularization of microplane damage models using an implicit gradient enhancement , 2014 .

[35]  G. Nguyen,et al.  A nonlocal coupled damage-plasticity model for the analysis of ductile failure , 2015 .

[36]  Zdeněk P. Bažant,et al.  Spectral analysis of localization in nonlocal and over-nonlocal materials with softening plasticity or damage , 2005 .

[37]  Vlado A. Lubarda,et al.  On the recoverable and dissipative parts of higher order stresses in strain gradient plasticity , 2016 .

[38]  Qi-Zhi Zhu,et al.  Micromechanical analysis of coupling between anisotropic damage and friction in quasi brittle materials: Role of the homogenization scheme , 2008 .

[39]  Mgd Marc Geers,et al.  A critical comparison of nonlocal and gradient-enhanced softening continua , 2001 .

[40]  Milan Jirásek,et al.  A thermodynamically consistent approach to microplane theory. Part I. Free energy and consistent microplane stresses , 2001 .

[41]  Pere C. Prat,et al.  Microplane Model for Brittle-Plastic Material: I. Theory , 1988 .

[42]  Chuangbing Zhou,et al.  A discrete thermodynamic approach for anisotropic plastic–damage modeling of cohesive‐frictional geomaterials , 2010 .

[43]  Angelo Simone,et al.  A simplified implementation of a gradient-enhanced damage model with transient length scale effects , 2013 .

[44]  K. Enakoutsa,et al.  Nonlocal modeling in high-velocity impact failure of 6061-T6 aluminum , 2014 .

[45]  K. Hashiguchi,et al.  Gradient plasticity with the tangential-subloading surface model and the prediction of shear-band thickness of granular materials , 2007 .

[46]  Jean-Baptiste Leblond,et al.  A note on integration schemes for the microplane model of the mechanical behaviour of concrete , 2004 .

[47]  Ekkehard Ramm,et al.  Identification and Interpretation of Microplane Material Laws , 2006 .

[48]  Z. Bažant,et al.  Microplane damage model for jointed rock masses , 2014 .

[49]  Michael Kaliske,et al.  Modeling of impact on concrete plates by use of the microplane approach , 2016 .