Functional Principal Component Analysis for Derivatives of Multivariate Curves

We present two methods based on functional principal component analysis (FPCA) for the estimation of smooth derivatives of a sample of random functions, which are observed in a more than one-dimensional domain. We apply eigenvalue decomposition to a) the dual covariance matrix of the derivatives, and b) the dual covariance matrix of the observed curves. To handle noisy data from discrete observations, we rely on local polynomial regressions. If curves are contained in a finite-dimensional function space, the second method performs better asymptotically. We apply our methodology in a simulation and empirical study, in which we estimate state price density (SPD) surfaces from call option prices. We identify three main components, which can be interpreted as volatility, skewness and tail factors. We also find evidence for term structure variation.

[1]  Peter N. C. Mohr,et al.  Portfolio Decisions and Brain Reactions via the CEAD method , 2014, Psychometrika.

[2]  Qi Li,et al.  Multivariate Local Polynomial Kernel Estimators: Leading Bias and Asymptotic Distribution , 2015 .

[3]  Yang-Ho Park Volatility-of-Volatility and Tail Risk Hedging Returns , 2015 .

[4]  Peter N. C. Mohr,et al.  Risk Patterns and Correlated Brain Activities. Multidimensional Statistical Analysis of fMRI Data in Economic Decision Making Study , 2013, Psychometrika.

[5]  Seung C. Ahn,et al.  Eigenvalue Ratio Test for the Number of Factors , 2013 .

[6]  W. Härdle,et al.  Shape Invariant Modeling of Pricing Kernels and Risk Aversion , 2013 .

[7]  Bruno Feunou,et al.  A Stochastic Volatility Model With Conditional Skewness , 2012 .

[8]  Wolfgang Härdle,et al.  The Implied Market Price of Weather Risk , 2012 .

[9]  Nikunj Kapadia,et al.  Tail and Volatility Indices from Option Prices , 2012 .

[10]  Risk Patterns and Correlated Brain Activities , 2011 .

[11]  Christos Davatzikos,et al.  Functional principal component model for high-dimensional brain imaging , 2011, NeuroImage.

[12]  Ana-Maria Staicu,et al.  Fast methods for spatially correlated multilevel functional data. , 2010, Biostatistics.

[13]  Hans-Georg Muller,et al.  ESTIMATION OF FUNCTIONAL DERIVATIVES , 2009, 0909.1157.

[14]  B. Caffo,et al.  MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS. , 2009, The annals of applied statistics.

[15]  Hans-Georg Müller,et al.  Estimating Derivatives for Samples of Sparsely Observed Functions, With Application to Online Auction Dynamics , 2009 .

[16]  Jin-Chuan Duan,et al.  Jump and Volatility Risk Premiums Implied by VIX , 2008 .

[17]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[18]  André Mas Local Functional Principal Component Analysis , 2007, math/0702609.

[19]  P. Hall,et al.  On properties of functional principal components analysis , 2006 .

[20]  Alois Kneip,et al.  Common Functional Principal Components , 2006, 0901.4252.

[21]  P. Sarda,et al.  CLT in functional linear regression models , 2005, math/0508073.

[22]  H. Müller,et al.  Functional Data Analysis for Sparse Longitudinal Data , 2005 .

[23]  L. Pedersen,et al.  Demand-Based Option Pricing , 2005 .

[24]  Nicolai Bissantz,et al.  On difference‐based variance estimation in nonparametric regression when the covariate is high dimensional , 2005 .

[25]  Nicolas P. B. Bollen,et al.  Does Net Buying Pressure Affect the Shape of Implied Volatility Functions? , 2002 .

[26]  Damiano Brigo,et al.  Lognormal-mixture dynamics and calibration to market volatility smiles , 2002 .

[27]  André Mas,et al.  Weak convergence for the covariance operators of a Hilbertian linear process , 2002 .

[28]  Rama Cont,et al.  Dynamics of implied volatility surfaces , 2002 .

[29]  K. J. Utikal,et al.  Inference for Density Families Using Functional Principal Component Analysis , 2001 .

[30]  R. Weron Estimating long range dependence: finite sample properties and confidence intervals , 2001, cond-mat/0103510.

[31]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[32]  J. Bai,et al.  Determining the Number of Factors in Approximate Factor Models , 2000 .

[33]  C. Mallows Some Comments on Cp , 2000, Technometrics.

[34]  Denis Bosq,et al.  Linear Processes in Function Spaces , 2000 .

[35]  Nikolaos Panigirtzoglou,et al.  Testing the Stability of Implied Probability Density Functions , 2002 .

[36]  P. Sarda,et al.  Functional linear model , 1999 .

[37]  Jens Carsten Jackwerth,et al.  Option-Implied Risk-Neutral Distributions and Implied Binomial Trees , 1999 .

[38]  Jens Carsten Jackwerth,et al.  Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review , 1999 .

[39]  F. Comte,et al.  Long memory in continuous‐time stochastic volatility models , 1998 .

[40]  Bhupinder Bahra Implied Risk-Neutral Probability Density Functions from Option Prices: Theory and Application , 1997 .

[41]  Jianqing Fan,et al.  Local Polynomial Regression: Optimal Kernels and Asymptotic Minimax Efficiency , 1997 .

[42]  Elias Masry,et al.  MULTIVARIATE LOCAL POLYNOMIAL REGRESSION FOR TIME SERIES:UNIFORM STRONG CONSISTENCY AND RATES , 1996 .

[43]  M. Wand,et al.  Multivariate Locally Weighted Least Squares Regression , 1994 .

[44]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[45]  Jianqing Fan,et al.  Variable Bandwidth and Local Linear Regression Smoothers , 1992 .

[46]  J. Marron,et al.  On variance estimation in nonparametric regression , 1990 .

[47]  A. Lo Long-Term Memory in Stock Market Prices , 1989 .

[48]  J. Ramsay,et al.  Principal components analysis of sampled functions , 1986 .

[49]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[50]  J. Rice Bandwidth Choice for Nonparametric Regression , 1984 .

[51]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[52]  J. Dauxois,et al.  Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .

[53]  M. Rubinstein. Nonparametric tests of alternative option pricing models using all reported trades and quotes on the , 1985 .

[54]  Douglas T. Breeden,et al.  Prices of State-Contingent Claims Implicit in Option Prices , 1978 .

[55]  Merton H. Miller,et al.  Prices for State-contingent Claims: Some Estimates and Applications , 1978 .

[56]  R. H. Kent,et al.  The Mean Square Successive Difference , 1941 .