A Monte Carlo simulation study of the temperature dependence for the conformation distribution of 1,2-dimethoxyethane in water

Monte Carlo simulations of 1,2-dimethoxyethane in water were performed at two temperatures; 298 and 398 K. Analysis of the simulations shows that the anti–anti–anti conformer of 1,2-dimethoxyethane is the only of the most populated conformers that increases its probability with increasing temperature. This behavior suggests that clouding of polyethyleneoxide-water solutions is induced by conformational changes. In both simulations the amount of the anti–anti-gauche conformer is surprisingly large, even though convergence problems of the simulation at 298 K occurred. A high amount of the anti–anti-gauche conformer of 1,2-dimethoxyethane in water solution have not been reported before.

[1]  K. Hall,et al.  Conformations of 1,2-Dimethoxyethane in Gas and Solution Phase from Molecular Mechanics and Monte Carlo/Stochastic Dynamics Simulations , 1996 .

[2]  Ola Engkvist,et al.  Intermolecular Potential for the 1,2-Dimethoxyethane−Water Complex , 1996 .

[3]  S. Tsuzuki,et al.  A possible crystal structure of 1,2-dimethoxyethane: prediction based on a lattice variable molecular dynamics , 1995 .

[4]  P. Åstrand,et al.  Novel model for calculating the intermolecular part of the infrared spectrum for molecular complexes , 1995 .

[5]  Gunnar Karlström,et al.  Molecular dynamics study of water adopting a potential function with explicit atomic dipole moments and anisotropic polarizabilities , 1995 .

[6]  W. V. Gunsteren,et al.  Can Simple Quantum-Chemical Continuum Models Explain the Gauche Effect in Poly(ethylene oxide)? , 1994 .

[7]  Franca Fraternali,et al.  Conformational transitions of a dipeptide in water: Effects of imposed pathways using umbrella sampling techniques , 1994 .

[8]  Wilfred F. van Gunsteren,et al.  The computation of a potential of mean force: Choice of the biasing potential in the umbrella sampling technique , 1994 .

[9]  P. Åstrand,et al.  NONEMPIRICAL INTERMOLECULAR POTENTIALS FOR UREA-WATER SYSTEMS , 1994 .

[10]  D. Y. Yoon,et al.  Conformation of 1,2-dimethoxyethane from ab initio electronic structure calculations , 1993 .

[11]  Giovanni Ciccotti,et al.  Sampling of molecular conformations by molecular dynamics techniques , 1993 .

[12]  C. Brooks,et al.  Constant-temperature free energy surfaces for physical and chemical processes , 1993 .

[13]  S. Tsuzuki,et al.  Conformational analysis of 1,2-dimethoxyethane by ab initio molecular orbital and molecular mechanics calculations: stabilization of the TGG' rotamer by the 1,5 CH3/O nonbonding attractive interaction , 1993 .

[14]  Mark A. Murcko,et al.  Ab initio molecular orbital conformational analysis of prototypical organic systems. 1. Ethylene glycol and 1,2-dimethoxyethane , 1992 .

[15]  R. Hooft,et al.  An adaptive umbrella sampling procedure in conformational analysis using molecular dynamics and its application to glycol , 1992 .

[16]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[17]  A. Abe,et al.  Conformation of 1,2-dimethoxyethane in the gas phase: a rotational isomeric state simulation of NMR vicinal coupling constants , 1992 .

[18]  Jan Kroon,et al.  Use of molecular dynamics methods in conformational analysis. Glycol. A model study , 1992 .

[19]  Yoshiki Ogawa,et al.  Importance of an intramolecular 1,5-CH…O interaction and intermolecular interactions as factors determining conformational equilibria in 1,2-dimethoxyethane: a matrix-isolation infrared spectroscopic study , 1992 .

[20]  F. Auriemma,et al.  Investigation of a poly(oxyethylene) chain by a molecular dynamics simulation in an aqueous solution and by Langevin dynamics simulations , 1991 .

[21]  G. Karlstroem,et al.  Conformational adaption of poly(ethylene oxide): A carbon-13 NMR study , 1991 .

[22]  D. Bressanini,et al.  A Monte Carlo simulation of liquid 1,2-dimethoxyethane , 1990 .

[23]  Charles L. Brooks,et al.  The thermodynamics of solvophobic effects: A molecular‐dynamics study of n‐butane in carbon tetrachloride and water , 1990 .

[24]  G. Karlstroem,et al.  New intermolecular energy calculation scheme: applications to potential surface and liquid properties of water , 1990 .

[25]  William L. Jorgensen,et al.  Use of statistical perturbation theory for computing solvent effects on molecular conformation: butane in water , 1987 .

[26]  G. Karlstroem,et al.  Dynamics and order of nonionic surfactants in neat liquid and micellar solution from multifield carbon-13 NMR relaxation and carbon-13 NMR chemical shifts , 1987 .

[27]  G. Karlstróm,et al.  Conformational structure of 1,2-dimethoxyethane in water and other dipolar solvents, studied by quantum chemical, reaction field, and statistical mechanical techniques , 1985 .

[28]  G. Karlstroem A new model for upper and lower critical solution temperatures in poly(ethylene oxide) solutions , 1985 .

[29]  A. Abe,et al.  NMR Studies and Conformational Energy Calculations of 1,2-Dimethoxyethane and Poly(oxyethylene) , 1985 .

[30]  R. Goldstein On the theory of lower critical solution pOints in hydrogen-bonded mixtures , 1984 .

[31]  G. Karlström Local polarizabilities in molecules, based on ab initio Hartree-Fock calculations , 1982 .

[32]  M. Ohta,et al.  Vibration Spectra and Rotational Isomerism of Chain Molecules. V. 2,5-Dioxahexane, 2,5-Dithiahexane, and 2-Oxa-5-thiahexane , 1977 .

[33]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[34]  Mitsuo Nakata,et al.  Upper and lower critical solution temperatures in poly (ethylene glycol) solutions , 1976 .

[35]  Pietro L. Indovina,et al.  Conformational studies of ethylene glycol and its two methyl ether derivatives: II. A nuclear magnetic resonance study of 2-methoxyethanol and 1,2-dimethoxyethane , 1974 .

[36]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[37]  Henry Eyring,et al.  A Theory of Liquid Structure , 1937 .

[38]  D. Y. Yoon,et al.  CONFORMATIONS OF 1,2-DIMETHOXYETHANE IN THE GAS AND LIQUID PHASES FROM MOLECULAR DYNAMICS SIMULATIONS , 1995 .

[39]  L. Thompson,et al.  Monte Carlo simulations of a single poly(oxyethylene) C12E3 chain headgroup fixed on a bilayer surface in water , 1994 .

[40]  J Hermans,et al.  Microfolding: Conformational probability map for the alanine dipeptide in water from molecular dynamics simulations , 1988, Proteins.

[41]  M. Mezei Adaptive umbrella sampling: Self-consistent determination of the non-Boltzmann bias , 1987 .

[42]  H. Matsuura,et al.  Conformational analysis of poly(oxyethylene) chain in aqueous solution as a hydrophilic moiety of nonionic surfactants , 1985 .

[43]  R. Kjellander,et al.  Water structure and changes in thermal stability of the system poly(ethylene oxide)–water , 1981 .

[44]  Ralf Steudel,et al.  An Investigation of the Molecular Structure and Conformation of 1,2-Dimethoxyethane, CH3-O-CH2-CH2-O-CH3, in the Gas Phase. , 1979 .

[45]  B. Ninham,et al.  Towards a microscopic theory of hydrophobic solutions , 1978 .

[46]  Henry Margenau,et al.  Theory of intermolecular forces , 1969 .