Biology-oriented synthesis.

Which compound classes are best suited as probes and tools for chemical biology research and as inspiration for medicinal chemistry programs? Chemical space is enormously large and cannot be exploited conclusively by means of synthesis efforts. Methods are required that allow one to identify and map the biologically relevant subspaces of vast chemical space, and serve as hypothesis-generating tools for inspiring synthesis programs. Biology-oriented synthesis builds on structural conservatism in the evolution of proteins and natural products. It employs a hierarchical classification of bioactive compounds according to structural relationships and type of bioactivity, and selects the scaffolds of bioactive molecule classes as starting points for the synthesis of compound collections with focused diversity. Navigation in chemical space is facilitated by Scaffold Hunter, an intuitively accessible and highly interactive software. Small molecules synthesized according to BIOS are enriched in bioactivity. They facilitate the analysis of complex biological phenomena by means of acute perturbation and may serve as novel starting points to inspire drug discovery programs.

[1]  C. Fishwick,et al.  Structure-based discovery of antibacterial drugs , 2010, Nature Reviews Microbiology.

[2]  H. Waldmann,et al.  Silver catalyzed cascade synthesis of alkaloid ring systems: concise total synthesis of fascaplysin, homofascaplysin C and analogues. , 2010, Chemical communications.

[3]  Stefan Wetzel,et al.  Small-molecule inhibition of APT1 affects Ras localization and signaling. , 2010, Nature chemical biology.

[4]  Ricardo Macarron,et al.  Enhancements of screening collections to address areas of unmet medical need: an industry perspective. , 2010, Current opinion in chemical biology.

[5]  Herbert Waldmann,et al.  Bioactivity-guided navigation of chemical space. , 2010, Accounts of chemical research.

[6]  Stefan Wetzel,et al.  A scaffold-tree-merging strategy for prospective bioactivity annotation of gamma-pyrones. , 2010, Angewandte Chemie.

[7]  Herbert Waldmann,et al.  Principles, implementation, and application of biology-oriented synthesis (BIOS) , 2010, Biological chemistry.

[8]  P. Bastiaens,et al.  The Palmitoylation Machinery Is a Spatially Organizing System for Peripheral Membrane Proteins , 2010, Cell.

[9]  Stephen V Frye,et al.  The art of the chemical probe. , 2010, Nature chemical biology.

[10]  H. Waldmann,et al.  Synthesis and structure-activity correlation of natural-product inspired cyclodepsipeptides stabilizing F-actin. , 2010, Journal of the American Chemical Society.

[11]  Klaus-Robert Müller,et al.  From Machine Learning to Natural Product Derivatives that Selectively Activate Transcription Factor PPARγ , 2010, ChemMedChem.

[12]  C. Humblet,et al.  Escape from flatland: increasing saturation as an approach to improving clinical success. , 2009, Journal of medicinal chemistry.

[13]  H. Waldmann,et al.  The Ras pathway modulator melophlin A targets dynamins. , 2009, Angewandte Chemie.

[14]  Stefan Wetzel,et al.  Corrigendum: Interactive exploration of chemical space with Scaffold Hunter , 2009 .

[15]  J. Vederas,et al.  Drug Discovery and Natural Products: End of an Era or an Endless Frontier? , 2009, Science.

[16]  Stefan Wetzel,et al.  Bioactivity-guided mapping and navigation of chemical space. , 2009, Nature chemical biology.

[17]  Andreas Bender,et al.  Plate-Based Diversity Selection Based on Empirical HTS Data to Enhance the Number of Hits and Their Chemical Diversity , 2009, Journal of biomolecular screening.

[18]  Herbert Waldmann,et al.  The therapeutic potential of phosphatase inhibitors. , 2009, Current opinion in chemical biology.

[19]  S. Renner,et al.  Synthesis and Structure–Activity Correlation of a Brunsvicamide‐Inspired Cyclopeptide Collection , 2009, Chembiochem : a European journal of chemical biology.

[20]  K. Kumar,et al.  Die Synthese von naturstoffinspirierten Verbindungsbibliotheken , 2009 .

[21]  Herbert Waldmann,et al.  Synthesis of natural product inspired compound collections. , 2009, Angewandte Chemie.

[22]  Tudor I. Oprea,et al.  Novel chemical space exploration via natural products. , 2009, Journal of medicinal chemistry.

[23]  P. Arya,et al.  Advances in solution- and solid-phase synthesis toward the generation of natural product-like libraries. , 2009, Chemical reviews.

[24]  E. Zamir,et al.  Reverse engineering intracellular biochemical networks. , 2008, Nature chemical biology.

[25]  Gisbert Schneider,et al.  Scaffold diversity of natural products: inspiration for combinatorial library design. , 2008, Natural product reports.

[26]  T. Berg Signal Transducers and Activators of Transcription as Targets for Small Organic Molecules , 2008, Chembiochem : a European journal of chemical biology.

[27]  Iris M. Oppel,et al.  Asymmetric synthesis of natural product inspired tricyclic benzopyrones by an organocatalyzed annulation reaction. , 2008, Angewandte Chemie.

[28]  H. Waldmann,et al.  Totalsynthese von Chondramid C und Bindung an F‐Aktin , 2008 .

[29]  S. Renner,et al.  Total synthesis of chondramide C and its binding mode to F-actin. , 2008, Angewandte Chemie.

[30]  H. Waldmann,et al.  Entwicklung einer neuen Klasse von Inhibitoren der Proteintyrosinphosphatase‐B aus Mycobacterium tuberculosis durch Biologie‐orientierte Synthese (BIOS) , 2008 .

[31]  K. Saxena,et al.  Discovery of a new class of inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B by biology-oriented synthesis. , 2008, Angewandte Chemie.

[32]  H. Waldmann,et al.  Solid-support based total synthesis and stereochemical correction of brunsvicamide A. , 2008, Organic letters.

[33]  Herbert Waldmann,et al.  Synthesis of a dysidiolide-inspired compound library and discovery of acetylcholinesterase inhibitors based on protein structure similarity clustering (PSSC) , 2008 .

[34]  L. Wessjohann,et al.  Rapid generation of macrocycles with natural-product-like side chains by multiple multicomponent macrocyclizations (MiBs). , 2008, Organic & biomolecular chemistry.

[35]  Tudor I. Oprea,et al.  WOMBAT and WOMBAT‐PK: Bioactivity Databases for Lead and Drug Discovery , 2008 .

[36]  S. Wetzel,et al.  Biology-inspired synthesis of compound libraries , 2008, Cellular and Molecular Life Sciences.

[37]  Harald Schwalbe,et al.  Identification of inhibitors for mycobacterial protein tyrosine phosphatase B (MptpB) by biology-oriented synthesis (BIOS). , 2007, Chemistry, an Asian journal.

[38]  Stefan Wetzel,et al.  Cheminformatic Analysis of Natural Products and their Chemical Space , 2007 .

[39]  H. Waldmann,et al.  Stereoselective allylation of aldehydes on solid support and its application in biology-oriented synthesis (BIOS) , 2007 .

[40]  J. Porco,et al.  Synthesis of pyrrolo-isoquinolines related to the lamellarins using silver-catalyzed cycloisomerization/dipolar cycloaddition. , 2007, Journal of the American Chemical Society.

[41]  Ronald J Quinn,et al.  Identification of Protein Fold Topology Shared between Different Folds Inhibited by Natural Products , 2007, Chembiochem : a European journal of chemical biology.

[42]  Herbert Waldmann,et al.  Natural product-derived modulators of cell cycle progression and viral entry by enantioselective oxa Diels-Alder reactions on the solid phase. , 2007, Chemistry & biology.

[43]  H. Waldmann,et al.  Biology-oriented synthesis of stereochemically diverse natural-product-derived compound collections by iterative allylations on a solid support. , 2007, Chemistry.

[44]  D. Newman,et al.  Natural products as sources of new drugs over the last 25 years. , 2007, Journal of natural products.

[45]  Stefan Wetzel,et al.  The Scaffold Tree - Visualization of the Scaffold Universe by Hierarchical Scaffold Classification , 2007, J. Chem. Inf. Model..

[46]  P. Hajduk,et al.  Puzzling through fragment-based drug design , 2006, Nature chemical biology.

[47]  Peter Willett,et al.  Similarity-based virtual screening using 2D fingerprints. , 2006, Drug discovery today.

[48]  P. Hajduk Fragment-based drug design: how big is too big? , 2006, Journal of medicinal chemistry.

[49]  H. Waldmann,et al.  Stereocomplementary synthesis of a natural product-derived compound collection on a solid phase. , 2006, Chemical communications.

[50]  H. Waldmann,et al.  Enantioselective synthesis on the solid phase. , 2006, Chemical Communications.

[51]  H. Waldmann,et al.  Enantioselective Catalysis on the Solid Phase: Synthesis of Natural Product‐Derived Tetrahydropyrans Employing the Enantioselective Oxa‐Diels–Alder Reaction , 2006 .

[52]  Adam Yasgar,et al.  Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Herbert Waldmann,et al.  Discovery of protein phosphatase inhibitor classes by biology-oriented synthesis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[54]  G. Klebe Virtual ligand screening: strategies, perspectives and limitations , 2006, Drug Discovery Today.

[55]  Jérôme Kluza,et al.  Cancer cell mitochondria are direct proapoptotic targets for the marine antitumor drug lamellarin D. , 2006, Cancer research.

[56]  S. Park,et al.  Solid-phase parallel synthesis of natural product-like diaza-bridged heterocycles through Pictet-Spengler intramolecular cyclization. , 2006, Journal of combinatorial chemistry.

[57]  Ronald J Quinn,et al.  A common protein fold topology shared by flavonoid biosynthetic enzymes and therapeutic targets. , 2006, Journal of natural products.

[58]  N. Grishin,et al.  Exploring dynamics of protein structure determination and homology-based prediction to estimate the number of superfamilies and folds , 2006, BMC Structural Biology.

[59]  A. Schuffenhauer,et al.  Charting biologically relevant chemical space: a structural classification of natural products (SCONP). , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Herbert Waldmann,et al.  Natural Product-Guided Synthesis of a Spiroacetal Collection Reveals Modulators of Tubulin Cytoskeleton Integrity , 2005 .

[61]  I. Paterson,et al.  Towards the combinatorial synthesis of spongistatin fragment libraries by using asymmetric aldol reactions on solid support. , 2005, Chemical communications.

[62]  Stuart L Schreiber,et al.  Small molecules: the missing link in the central dogma , 2005, Nature chemical biology.

[63]  H. Waldmann,et al.  Inhibitoren der Proteintyrosinphosphatasen: Kandidaten für zukünftige Wirkstoffe? , 2005 .

[64]  H. Waldmann,et al.  Inhibitors of protein tyrosine phosphatases: next-generation drugs? , 2005, Angewandte Chemie.

[65]  Herbert Waldmann,et al.  Protein structure similarity clustering (PSSC) and natural product structure as inspiration sources for drug development and chemical genomics. , 2005, Current opinion in chemical biology.

[66]  Agnieszka Ulaczyk-Lesanko,et al.  Wanted: new multicomponent reactions for generating libraries of polycyclic natural products. , 2005, Current opinion in chemical biology.

[67]  Tudor I. Oprea,et al.  WOMBAT: World of Molecular Bioactivity , 2005 .

[68]  C. Bailly,et al.  Molecular determinants of topoisomerase I poisoning by lamellarins: comparison with camptothecin and structure-activity relationships. , 2005, Journal of medicinal chemistry.

[69]  Herbert Waldmann,et al.  Protein structure similarity clustering and natural product structure as guiding principles in drug discovery. , 2005, Drug discovery today.

[70]  Herbert Waldmann,et al.  An Acylation Cycle Regulates Localization and Activity of Palmitoylated Ras Isoforms , 2005, Science.

[71]  S. Danishefsky,et al.  Total synthesis of cribrostatin IV: fine-tuning the character of an amide bond by remote control. , 2005, Journal of the American Chemical Society.

[72]  D. Hosfield,et al.  Conformational Flexibility in Crystal Structures of Human 11β-Hydroxysteroid Dehydrogenase Type I Provide Insights into Glucocorticoid Interconversion and Enzyme Regulation* , 2005, Journal of Biological Chemistry.

[73]  Minghan Wang,et al.  Nutrition & Metabolism BioMed Central Review The role of glucocorticoid action in the pathophysiology of the Metabolic Syndrome , 2004 .

[74]  C. Dobson Chemical space and biology , 2004, Nature.

[75]  Herbert Waldmann,et al.  Compound library development guided by protein structure similarity clustering and natural product structure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[76]  V. Motilva,et al.  New Pharmacological Perspectives and Therapeutic Potential of PPAR-γ Agonists , 2004 .

[77]  C. Avendaño,et al.  Pictet Spengler-type reactions in 3-arylmethylpiperazine-2,5-diones. Synthesis of pyrazinotetrahydroisoquinolines , 2004 .

[78]  H. Waldmann,et al.  Asymmetrische Festphasensynthese von 6,6-Spiroacetalen , 2004 .

[79]  Herbert Waldmann,et al.  Asymmetric solid-phase synthesis of 6,6-spiroketals. , 2004, Angewandte Chemie.

[80]  A Ganesan,et al.  Natural products and combinatorial chemistry: back to the future. , 2004, Current opinion in chemical biology.

[81]  V. Jarlier,et al.  Mycobacterium tuberculosis DNA Gyrase: Interaction with Quinolones and Correlation with Antimycobacterial Drug Activity , 2004, Antimicrobial Agents and Chemotherapy.

[82]  J. Flier,et al.  Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11 beta-hydroxysteroid dehydrogenase type 1-deficient mice. , 2004, Diabetes.

[83]  V. Jordan,et al.  Selective estrogen receptor modulation: concept and consequences in cancer. , 2004, Cancer cell.

[84]  H. Waldmann,et al.  Synthesis and biological evaluation of an indomethacin library reveals a new class of angiogenesis-related kinase inhibitors. , 2004, Angewandte Chemie.

[85]  A B Atkinson,et al.  Diagnosis and complications of Cushing's syndrome: a consensus statement. , 2003, The Journal of clinical endocrinology and metabolism.

[86]  R. Evans,et al.  Discovery and optimization of non-steroidal FXR agonists from natural product-like libraries. , 2003, Organic & biomolecular chemistry.

[87]  Miklos Feher,et al.  Property Distributions: Differences between Drugs, Natural Products, and Molecules from Combinatorial Chemistry , 2003, J. Chem. Inf. Comput. Sci..

[88]  H. Waldmann,et al.  Solid-phase synthesis of dysidiolide-derived protein phosphatase inhibitors. , 2002, Journal of the American Chemical Society.

[89]  H. Waldmann,et al.  Von Proteindomänen zu Wirkstoffkandidaten - Naturstoffe als Leitstrukturen für das Design und die Synthese von Substanzbibliotheken , 2002 .

[90]  Herbert Waldmann,et al.  From protein domains to drug candidates-natural products as guiding principles in the design and synthesis of compound libraries. , 2002, Angewandte Chemie.

[91]  G. Klebe,et al.  Ansätze zur Beschreibung und Vorhersage der Bindungsaffinität niedermolekularer Liganden an makromolekulare Rezeptoren , 2002 .

[92]  G. Klebe,et al.  Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. , 2002, Angewandte Chemie.

[93]  Cheryl A. Janson,et al.  Identification of a Series of Tricyclic Natural Products as Potent Broad-Spectrum Inhibitors of Metallo-β-Lactamases , 2002, Antimicrobial Agents and Chemotherapy.

[94]  H. Waldmann,et al.  Natural products are biologically validated starting points in structural space for compound library development: solid-phase synthesis of dysidiolide-derived phosphatase inhibitors. , 2002, Angewandte Chemie.

[95]  O. Müller,et al.  Naturstoffe sind biologisch validierte Startpunkte im Strukturraum zur Entwicklung von Substanzbibliotheken: Festphasensynthese von Analoga des Protein-Phosphatase-Inhibitors Dysidiolid , 2002 .

[96]  Herbert Waldmann,et al.  From protein domains to drug candidates – natural products as guiding principles in , 2002 .

[97]  J. Jernigan,et al.  High-Resolution Observations of the Elliptical Galaxy NGC 4636 with the Reflection Grating Spectrometer on Board XMM-Newton , 2001, astro-ph/0110013.

[98]  G. Schneider,et al.  Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries. , 2001, Journal of combinatorial chemistry.

[99]  K. Nicolaou,et al.  Natural Product-like Combinatorial Libraries Based on Privileged Structures. 2. Construction of a 10 000-Membered Benzopyran Library by Directed Split-and-Pool Chemistry Using NanoKans and Optical Encoding , 2000 .

[100]  L. Wessjohann Synthesis of natural-product-based compound libraries. , 2000, Current opinion in chemical biology.

[101]  Y. Ye,et al.  Melophlins A and B, Novel Tetramic Acids Reversing the Phenotype of ras-Transformed Cells, from the Marine Sponge Melophlus sarassinorum , 2000 .

[102]  A. Myers,et al.  A Concise, Stereocontrolled Synthesis of (−)-Saframycin A by the Directed Condensation of α-Amino Aldehyde Precursors , 1999 .

[103]  Frederic D. Bushman,et al.  Lamellarin α 20-Sulfate, an Inhibitor of HIV-1 Integrase Active against HIV-1 Virus in Cell Culture , 1999 .

[104]  T. Henkel,et al.  Statistische Untersuchungen zur Strukturkomplementarität von Naturstoffen und synthetischen Substanzen , 1999 .

[105]  Thomas Henkel,et al.  Statistical Investigation into the Structural Complementarity of Natural Products and Synthetic Compounds. , 1999, Angewandte Chemie.

[106]  L. Tietze,et al.  Domino reactions for library synthesis of small molecules in combinatorial chemistry. , 1998, Current opinion in chemical biology.

[107]  Edwards,et al.  11 b-Hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress , 1997 .

[108]  R. Seltzer Better management of nuclear cleanups urged , 1996 .

[109]  W. Guida,et al.  The art and practice of structure‐based drug design: A molecular modeling perspective , 1996, Medicinal research reviews.

[110]  Davidr . Evans,et al.  Double Stereodifferentiating Aldol Reactions. The Documentation of "Partially Matched" Aldol Bond Constructions in the Assemblage of Polypropionate Systems , 1995 .

[111]  Françoise Perron,et al.  Chemistry of spiroketals , 1989 .

[112]  B. E. Evans,et al.  Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. , 1988, Journal of medicinal chemistry.