Development and validation of a one-dimensional solidification model — Part I: Analytical model

[1]  H. Gu,et al.  Evaluation of a freeze-tolerant decay heat removal system redundancy for fluoride salt-cooled high-temperature reactors (FHR) , 2022, Annals of Nuclear Energy.

[2]  H. Gu,et al.  Performance evaluation of DRACS system of molten salt reactors using a transient solidification model , 2021, Nuclear Engineering and Design.

[3]  Gang Wang,et al.  Summary of severe accident issues of LBE-cooled reactors , 2018, Annals of Nuclear Energy.

[4]  E. Blandford,et al.  Conceptual design of a freeze-tolerant Direct Reactor Auxiliary Cooling System for Fluoride-salt-cooled High-temperature Reactors , 2018, Nuclear Engineering and Design.

[5]  P. Rubiolo,et al.  Progress in modeling solidification in molten salt coolants , 2017 .

[6]  Dieter Brüggemann,et al.  A comprehensive benchmark of fixed-grid methods for the modeling of melting , 2017 .

[7]  D. J. Krishna,et al.  Influence of Mushy Zone Constant on Thermohydraulics of a PCM , 2017 .

[8]  Christos N. Markides,et al.  Transient freezing of molten salts in pipe-flow systems: application to the direct reactor auxiliary cooling system (DRACS) , 2017 .

[9]  Luca Marocco,et al.  Review of data and correlations for turbulent forced convective heat transfer of liquid metals in pipes , 2015 .

[10]  Alessandro Alemberti,et al.  Overview of lead-cooled fast reactor activities , 2014 .

[11]  John E. Kelly,et al.  Generation IV International Forum: A decade of progress through international cooperation , 2014 .

[12]  Yeong-Il Kim,et al.  A summary of sodium-cooled fast reactor development , 2014 .

[13]  J. Kloosterman,et al.  The Molten Salt Reactor in Generation IV: Overview and Perspectives , 2014 .

[14]  Ronghua Chen,et al.  Numerical investigation on melt freezing behavior in a tube by MPS method , 2014 .

[15]  G. I. Barenblatt,et al.  Turbulent flows at very large Reynolds numbers: new lessons learned , 2014 .

[16]  Giorgio Locatelli,et al.  Generation IV nuclear reactors: Current status and future prospects , 2013 .

[17]  Hang Guo,et al.  Local resistance of fluid flow across sudden contraction in small channels , 2010 .

[18]  Yoshiharu Tobita,et al.  Establishment of Freezing Model for Reactor Safety Analysis , 2006 .

[19]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[20]  Abdul Jabbar N. Khalifa Natural convective heat transfer coefficient : a review. I. Isolated vertical and horizontal surfaces , 2001 .

[21]  P. Carman Fluid flow through granular beds , 1997 .

[22]  C. Gandin,et al.  A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes , 1994 .

[23]  Vaughan R Voller,et al.  ON THE ENTHALPY METHOD , 1993 .

[24]  V. Voller,et al.  A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems , 1987 .

[25]  P. Roberts,et al.  A THERMODYNAMICALLY CONSISTENT MODEL OF A MUSHY ZONE , 1983 .

[26]  L. Thomas Temperature Profiles for Liquid Metals and Moderate-Prandtl-Number Fluids , 1970 .

[27]  E. Skupinski,et al.  Determination des coefficients de convection d'un alliage sodium-potassium dans un tube circulaire , 1965 .

[28]  R. Smith,et al.  The influence of convection during solidification on fragmentation of the mushy zone of a model alloy , 1997 .

[29]  M. Rappaz,et al.  Modelling of microstructure formation in solidification processes , 1989 .

[30]  J. R. Engel,et al.  EXPERIENCE WITH THE MOLTEN-SALT REACTOR EXPERIMENT , 1970 .

[31]  Numerical investigation of the in fl uence of mushy zone parameter A mush on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems , 2022 .