Reconstruction techniques for cardiac cine MRI

The present survey describes the state-of-the-art techniques for dynamic cardiac magnetic resonance image reconstruction. Additionally, clinical relevance, main challenges, and future trends of this image modality are outlined. Thus, this paper aims to provide a general vision about cine MRI as the standard procedure in functional evaluation of the heart, focusing on technical methodologies.

[1]  Yasuyuki Suzuki,et al.  Three-dimensional Cardiac MR Imaging: Related Techniques and Clinical Applications , 2017, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[2]  David Atkinson,et al.  Compressive manifold learning: Estimating one‐dimensional respiratory motion directly from undersampled k‐space data , 2014, Magnetic resonance in medicine.

[3]  Shouyin Liu,et al.  Low-Rank and Sparse Decomposition Model for Accelerating Dynamic MRI Reconstruction , 2017, Journal of healthcare engineering.

[4]  Ciprian Catana,et al.  Motion correction options in PET/MRI. , 2015, Seminars in nuclear medicine.

[5]  Michael Lustig,et al.  Coil compression for accelerated imaging with Cartesian sampling , 2013, Magnetic resonance in medicine.

[6]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[7]  Marcos Martín-Fernández,et al.  Whole-Heart Single Breath-Hold Cardiac Cine: A Robust Motion-Compensated Compressed Sensing Reconstruction Method , 2016, RAMBO+HVSMR@MICCAI.

[8]  D Atkinson,et al.  Whole left ventricular functional assessment from two minutes free breathing multi-slice CINE acquisition. , 2015, Physics in medicine and biology.

[9]  Marcos Martín-Fernández,et al.  Jacobian weighted temporal total variation for motion compensated compressed sensing reconstruction of dynamic MRI , 2017, Magnetic resonance in medicine.

[10]  Michael Schacht Hansen,et al.  Gadgetron: An open source framework for medical image reconstruction , 2013, Magnetic resonance in medicine.

[11]  Bernd Stoeckel,et al.  Real-time cardiac MRI with radial acquisition and k-space variant reduced-FOV reconstruction. , 2018, Magnetic resonance imaging.

[12]  Daniel K Sodickson,et al.  Low‐rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components , 2015, Magnetic resonance in medicine.

[13]  H. Pouraliakbar,et al.  Chapter 8 – Cardiac Magnetic Resonance Imaging , 2018 .

[14]  Leon Axel,et al.  XD‐GRASP: Golden‐angle radial MRI with reconstruction of extra motion‐state dimensions using compressed sensing , 2016, Magnetic resonance in medicine.

[15]  Jan Bogaert,et al.  Cardiovascular MR imaging planes and segmentation , 2011 .

[16]  Filippo Cademartiri,et al.  Clinical indications for the use of cardiac MRI. By the SIRM Study Group on Cardiac Imaging , 2013, La radiologia medica.

[17]  Jian Sun,et al.  Deep ADMM-Net for Compressive Sensing MRI , 2016, NIPS.

[18]  D. Firmin,et al.  Motion in cardiovascular MR imaging. , 2009, Radiology.

[19]  Feng Liu,et al.  GPU accelerated high-dimensional compressed sensing MRI , 2014, 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV).

[20]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[21]  E R McVeigh,et al.  Segmented K-space cine breath-hold cardiovascular MR imaging: Part 1. Principles and technique. , 1997, AJR. American journal of roentgenology.

[22]  Andrew C Larson,et al.  Preliminary investigation of respiratory self‐gating for free‐breathing segmented cine MRI , 2005, Magnetic resonance in medicine.

[23]  R. MacMillan Cardiac magnetic resonance imaging. , 1993, Cardiovascular clinics.

[24]  S. Mavrogeni,et al.  T1 and T2 Mapping in Cardiology: “Mapping the Obscure Object of Desire” , 2017, Cardiology.

[25]  Marcos Martín-Fernández,et al.  OpenCLIPER: An OpenCL-Based C++ Framework for Overhead-Reduced Medical Image Processing and Reconstruction on Heterogeneous Devices , 2018, IEEE Journal of Biomedical and Health Informatics.

[26]  Ashraf A. Kassim,et al.  Multi-dimensional low rank plus sparse decomposition for reconstruction of under-sampled dynamic MRI , 2017, Pattern Recognit..

[27]  Dwight G Nishimura,et al.  Rapid compressed sensing reconstruction of 3D non‐Cartesian MRI , 2018, Magnetic resonance in medicine.

[28]  Li Feng,et al.  5D whole‐heart sparse MRI , 2018, Magnetic resonance in medicine.

[29]  V. Fuster,et al.  Promoting cardiovascular health worldwide: strategies, challenges, and opportunities. , 2014, Revista espanola de cardiologia.

[30]  Daniel Rueckert,et al.  Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction , 2017, IEEE Transactions on Medical Imaging.

[31]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[32]  Jun Liu,et al.  Novel highly accelerated real-time CINE-MRI featuring compressed sensing with k-t regularization in comparison to TSENSE segmented and real-time Cine imaging , 2013, Journal of Cardiovascular Magnetic Resonance.

[33]  Thomas Pock,et al.  Learning a variational network for reconstruction of accelerated MRI data , 2017, Magnetic resonance in medicine.

[34]  Neerav Dixit,et al.  Deep convolutional neural networks for accelerated dynamic magnetic resonance imaging , 2017 .

[35]  Yang Wang,et al.  Real-time dynamic MRI using parallel dictionary learning and dynamic total variation , 2017, Neurocomputing.

[36]  Mathews Jacob,et al.  Accelerated dynamic MRI using patch regularization for implicit motion compensation , 2017, Magnetic resonance in medicine.

[37]  S. Nielles-Vallespin,et al.  Respiratory self‐navigation for whole‐heart bright‐blood coronary MRI: Methods for robust isolation and automatic segmentation of the blood pool , 2012, Magnetic resonance in medicine.

[38]  H. Hakimzadeh,et al.  Part 1 , 2011 .

[39]  Andrew C Larson,et al.  Self‐gated cardiac cine MRI , 2004, Magnetic resonance in medicine.

[40]  Bruce R. Rosen,et al.  Image reconstruction by domain-transform manifold learning , 2017, Nature.

[41]  Jong Chul Ye,et al.  Deep residual learning for compressed sensing MRI , 2017, 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

[42]  Justin P. Haldar,et al.  High-resolution cardiac MRI using partially separable functions and weighted spatial smoothness regularization , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[43]  Peter Boesiger,et al.  Array compression for MRI with large coil arrays , 2007, Magnetic resonance in medicine.

[44]  Ghulam Muhammad,et al.  Development of the Arabic Voice Pathology Database and Its Evaluation by Using Speech Features and Machine Learning Algorithms , 2017, Journal of healthcare engineering.

[45]  Michael Lustig,et al.  k-t SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity , 2006 .

[46]  Mathews Jacob,et al.  Accelerated Dynamic MRI Exploiting Sparsity and Low-Rank Structure: k-t SLR , 2011, IEEE Transactions on Medical Imaging.

[47]  Feng Huang,et al.  k‐t GRAPPA: A k‐space implementation for dynamic MRI with high reduction factor , 2005, Magnetic resonance in medicine.

[48]  D. Hill,et al.  Whole‐heart cine MRI using real‐time respiratory self‐gating , 2007, Magnetic resonance in medicine.

[49]  Daniel K. Sodickson,et al.  Towards Routine Clinical Use of Radial Stack-of-Stars 3D Gradient-Echo Sequences for Reducing Motion Sensitivity , 2014 .

[50]  R. Biederman,et al.  Cardiac MRI: A General Overview with Emphasis on Current Use and Indications. , 2015, The Medical clinics of North America.

[51]  M. Usman,et al.  Free breathing whole-heart 3D CINE MRI with self-gated Cartesian trajectory , 2017, Magnetic resonance imaging.

[52]  C. White,et al.  Cardiac magnetic resonance imaging: techniques and principles. , 2008, Seminars in roentgenology.

[53]  Junzhou Huang,et al.  Real time dynamic MRI by exploiting spatial and temporal sparsity. , 2016, Magnetic resonance imaging.

[54]  M. Salman Asif,et al.  Motion‐adaptive spatio‐temporal regularization for accelerated dynamic MRI , 2013, Magnetic resonance in medicine.

[55]  Emile A. Hendriks,et al.  Cardiac MR perfusion image processing techniques: A survey , 2012, Medical Image Anal..

[56]  Jeffrey Tsao,et al.  Ultrafast imaging: Principles, pitfalls, solutions, and applications , 2010, Journal of magnetic resonance imaging : JMRI.

[57]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[58]  D. O. Walsh,et al.  Adaptive reconstruction of phased array MR imagery , 2000, Magnetic resonance in medicine.

[59]  Leslie Ying,et al.  Accelerating magnetic resonance imaging via deep learning , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[60]  Andrew J. Reader,et al.  High-Resolution Self-Gated Dynamic Abdominal MRI Using Manifold Alignment , 2017, IEEE Transactions on Medical Imaging.

[61]  Ben Adcock,et al.  Generalized sampling: stable reconstructions, inverse problems and compressed sensing over the continuum , 2013, ArXiv.

[62]  Leon Axel,et al.  Tagged Magnetic Resonance Imaging of the Heart: a Survey , 2004 .

[63]  Li Feng,et al.  Highly accelerated real‐time cardiac cine MRI using k–t SPARSE‐SENSE , 2013, Magnetic resonance in medicine.

[64]  Alexey A Samsonov,et al.  Reconstruction of dynamic image series from undersampled MRI data using data‐driven model consistency condition (MOCCO) , 2015, Magnetic resonance in medicine.

[65]  Marcos Martín-Fernández,et al.  Nonrigid groupwise registration for motion estimation and compensation in compressed sensing reconstruction of breath‐hold cardiac cine MRI , 2016, Magnetic resonance in medicine.

[66]  David Atkinson,et al.  Motion corrected compressed sensing for free‐breathing dynamic cardiac MRI , 2013, Magnetic resonance in medicine.

[67]  Karl-Heinz Herrmann,et al.  Retrospective reconstruction of cardiac cine images from golden‐ratio radial MRI using one‐dimensional navigators , 2014, Journal of magnetic resonance imaging : JMRI.

[68]  Robert Sheng Xu,et al.  GPU accelerated dynamic respiratory motion model correction for MRI-guided cardiac interventions , 2016, Comput. Methods Programs Biomed..

[69]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[70]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[71]  Markus Henningsson,et al.  Highly efficient respiratory motion compensated free‐breathing coronary mra using golden‐step Cartesian acquisition , 2015, Journal of magnetic resonance imaging : JMRI.

[72]  L. L. Grutta,et al.  Indicazioni cliniche per l’utilizzo della cardio RM. A cura del Gruppo di lavoro della Sezione di Cardio-Radiologia della SIRM , 2013 .

[73]  Alejandro F. Frangi,et al.  Three-dimensional modeling for functional analysis of cardiac images, a review , 2001, IEEE Transactions on Medical Imaging.

[74]  Jong Chul Ye,et al.  Radial k‐t FOCUSS for high‐resolution cardiac cine MRI , 2010, Magnetic resonance in medicine.

[75]  Reza Nezafat,et al.  2D free‐breathing dual navigator‐gated cardiac function validated against the 2D breath‐hold acquisition , 2008, Journal of magnetic resonance imaging : JMRI.

[76]  Yongli Wang,et al.  Dynamic Magnetic Resonance Imaging via Nonconvex Low-Rank Matrix Approximation , 2017, IEEE Access.

[77]  Minsong Cao,et al.  Respiratory motion‐resolved, self‐gated 4D‐MRI using rotating cartesian k‐space (ROCK) , 2017, Medical physics.

[78]  Benoît Naegel,et al.  SNR enhancement of highly-accelerated real-time cardiac MRI acquisitions based on non-local means algorithm , 2009, Medical Image Anal..

[79]  Andrew C Larson,et al.  Automated rectilinear self‐gated cardiac cine imaging , 2004, Magnetic resonance in medicine.

[80]  M. Lustig,et al.  Free‐breathing pediatric MRI with nonrigid motion correction and acceleration , 2015, Journal of magnetic resonance imaging : JMRI.

[81]  Yi Wang,et al.  Z intensity-weighted position self-respiratory gating method for free-breathing 3D cardiac CINE imaging. , 2011, Magnetic resonance imaging.

[82]  Claudia Prieto,et al.  Accelerated cardiac cine MRI using locally low rank and finite difference constraints. , 2016, Magnetic resonance imaging.

[83]  Daniel Rueckert,et al.  A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction , 2017, IEEE Transactions on Medical Imaging.

[84]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[85]  D. Berman,et al.  ECG and navigator‐free four‐dimensional whole‐heart coronary MRA for simultaneous visualization of cardiac anatomy and function , 2014, Magnetic resonance in medicine.

[86]  Peter Kellman,et al.  High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions , 2013, Journal of Cardiovascular Magnetic Resonance.

[87]  Mathews Jacob,et al.  Dynamic MRI Using SmooThness Regularization on Manifolds (SToRM) , 2016, IEEE Transactions on Medical Imaging.

[88]  Jong Chul Ye,et al.  k‐t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI , 2009, Magnetic resonance in medicine.

[89]  Davide Piccini,et al.  Spiral phyllotaxis: The natural way to construct a 3D radial trajectory in MRI , 2011, Magnetic resonance in medicine.

[90]  Guang Yang,et al.  DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction , 2018, IEEE Transactions on Medical Imaging.

[91]  M. Stuber,et al.  Compressed sensing single-breath-hold CMR for fast quantification of LV function, volumes, and mass. , 2014, JACC. Cardiovascular imaging.

[92]  K Takeda,et al.  Fast magnetic resonance imaging of the heart. , 1999, European journal of radiology.

[93]  Peter Boesiger,et al.  k‐t BLAST and k‐t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations , 2003, Magnetic resonance in medicine.

[94]  Leslie Ying,et al.  Compressed Sensing Dynamic Cardiac Cine MRI Using Learned Spatiotemporal Dictionary , 2014, IEEE Transactions on Biomedical Engineering.

[95]  D Hahn,et al.  Whole-Heart Cine MRI in a Single Breath-Hold – A Compressed Sensing Accelerated 3D Acquisition Technique for Assessment of Cardiac Function , 2013, Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren.

[96]  Olaf Dössel,et al.  An Optimal Radial Profile Order Based on the Golden Ratio for Time-Resolved MRI , 2007, IEEE Transactions on Medical Imaging.

[97]  Marcos Martín-Fernández,et al.  An Efficient Multi-resolution Reconstruction Scheme with Motion Compensation for 5D Free-Breathing Whole-Heart MRI , 2017, CMMI/RAMBO/SWITCH@MICCAI.

[98]  Peng Lai,et al.  Single breath hold 3D cardiac cine MRI using kat-ARC: preliminary results at 1.5T , 2015, The International Journal of Cardiovascular Imaging.

[99]  Peter Kellman,et al.  Retrospective reconstruction of high temporal resolution cine images from real‐time MRI using iterative motion correction , 2012, Magnetic resonance in medicine.

[100]  K. Pointon,et al.  Cardiac magnetic resonance imaging , 2004, Postgraduate Medical Journal.

[101]  M. Sivananthan,et al.  Role of MRI in clinical cardiology , 2004, The Lancet.

[102]  R. Turner,et al.  Echo-planar imaging: magnetic resonance imaging in a fraction of a second. , 1991, Science.

[103]  Mihaela Pop,et al.  Real‐time MRI guidance of cardiac interventions , 2017, Journal of magnetic resonance imaging : JMRI.

[104]  Javad Alirezaie,et al.  Nonrigid motion compensation in compressed sensing reconstruction of cardiac cine MRI. , 2018, Magnetic resonance imaging.

[105]  M. Stuber,et al.  Free‐running 4D whole‐heart self‐navigated golden angle MRI: Initial results , 2015, Magnetic resonance in medicine.

[106]  Joachim Hornegger,et al.  Single-breath-hold 3-D CINE imaging of the left ventricle using Cartesian sampling , 2018, Magnetic Resonance Materials in Physics, Biology and Medicine.

[107]  David Atkinson,et al.  Manifold learning based ECG‐free free‐breathing cardiac CINE MRI , 2015, Journal of magnetic resonance imaging : JMRI.

[108]  David Atkinson,et al.  Dynamic MR Image Reconstruction–Separation From Undersampled (${\bf k},t$)-Space via Low-Rank Plus Sparse Prior , 2014, IEEE Transactions on Medical Imaging.

[109]  Kay Nehrke,et al.  k‐t PCA: Temporally constrained k‐t BLAST reconstruction using principal component analysis , 2009, Magnetic resonance in medicine.

[110]  N. Codella,et al.  Respiratory and cardiac self‐gated free‐breathing cardiac CINE imaging with multiecho 3D hybrid radial SSFP acquisition , 2010, Magnetic resonance in medicine.