Computer‐Aided Process and Plant Development. A Review of Common Software Tools and Methods and Comparison against an Integrated Collaborative Approach

In process systems engineering models are used for many applications, e.g., process simulation, optimization or control. Various types of models such as shortcut or rigorous models exist. An exchange and reuse thereof is highly desirable, but seldom performed. This article focuses on current approaches for developing and solving process models in specific instances for different applications. A close look will be made at the state of the art in modeling, simulation, and optimization software. Requirements for future software developments are derived to reduce the development and synthesis costs for new chemical engineering processes. The web-based modeling, simulation, and optimization environment MOSAIC is taken as an example to highlight current developments towards collaborative computer-aided engineering work.

[1]  Ignacio E. Grossmann,et al.  Approximation to Multistage Stochastic Optimization in Multiperiod Batch Plant Scheduling under Demand Uncertainty , 2004 .

[2]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[3]  Pu Li,et al.  Optimal Production Planning for Chemical Processes under Uncertain Market Conditions , 2004 .

[4]  Cheng Jiang,et al.  Towards computer-aided multiscale modelling: A generic supporting environment for model realization and execution , 2012, Comput. Chem. Eng..

[5]  P. I. Barton,et al.  Symbolic Incorporation of External Procedures into Process Modeling Environments , 2002 .

[6]  Rafiqul Gani,et al.  Process synthesis, design and analysis using a process-group contribution method , 2015, Comput. Chem. Eng..

[7]  Günter Wozny,et al.  Improving Model and Data Integration Using MOSAIC as Central Data Management Platform , 2014 .

[8]  L. Biegler,et al.  Large-scale nonlinear programming with a cape-open compliant interface , 2005 .

[9]  R. Sargent,et al.  The mathematical modelling of transient systems using differential-algebraic equations , 1988 .

[10]  N. Sahinidis,et al.  Optimization in Process Planning under Uncertainty , 1996 .

[11]  Sebastian Engell,et al.  Aggregated Scheduling of a Multiproduct Batch Plant by Two-Stage Stochastic Integer Programming , 2002 .

[12]  Claire S. Adjiman,et al.  Molecules Matter: The Expanding Envelope of Process Design , 2014 .

[13]  Wolfgang Marquardt,et al.  Management and Reuse of Mathematical Models in the Industrial Design Process , 2004 .

[14]  Gonzalo Guillén-Gosálbez,et al.  Scope for the application of mathematical programming techniques in the synthesis and planning of sustainable processes , 2010, Comput. Chem. Eng..

[15]  Shanying Hu,et al.  Combine molecular modeling with optimization to stretch refinery operation , 2002 .

[16]  Christos T. Maravelias,et al.  Surrogate‐based superstructure optimization framework , 2011 .

[17]  Argimiro R. Secchi,et al.  Structural analysis for static and dynamic models , 2012, Math. Comput. Model..

[18]  Tamás Vinkó,et al.  A comparison of complete global optimization solvers , 2005, Math. Program..

[19]  Gürkan Sin,et al.  Systematic network synthesis and design: Problem formulation, superstructure generation, data management and solution , 2015, Comput. Chem. Eng..

[20]  G. J. Harmsen,et al.  Reactive distillation: The front-runner of industrial process intensification - A full review of commercial applications, research, scale-up, design and operation , 2007 .

[21]  J. Dreimann,et al.  Verfahrensentwicklung vom Labor zur Miniplant: Hydroformylierung von 1‐Dodecen in thermomorphen Lösungsmittelsystemen , 2014 .

[22]  Heinz A. Preisig,et al.  Constructing and maintaining proper process models , 2010, Comput. Chem. Eng..

[23]  Gabriele Sadowski,et al.  High-pressure gas solubility in multicomponent solvent systems for hydroformylation. Part I: Carbon monoxide solubility , 2013 .

[24]  Leon Urbas,et al.  Web-based object oriented modelling and simulation using mathml , 2004 .

[25]  Dianne P. O'Leary,et al.  Robot control: swinging like a pendulum , 2003, Comput. Sci. Eng..

[26]  L. Biegler,et al.  Reduced Order Model Based on Principal Component Analysis for Process Simulation and Optimization , 2009 .

[27]  Jorge J. Moré,et al.  The NEOS Server , 1998 .

[28]  Kai Sundmacher,et al.  Moderne Trenn- und Reaktionstechniken : die Reaktivdestillation , 2003 .

[29]  Eric S. Fraga,et al.  Interactivity and automated process design , 2003 .

[30]  Iain S. Duff,et al.  On Permutations to Block Triangular Form , 1977 .

[31]  David Wallace,et al.  Internet‐Based Integrated Environmental Assessment Using Ontologies to Share Computational Models , 2005 .

[32]  Alexander W. Dowling,et al.  A framework for efficient large scale equation-oriented flowsheet optimization , 2015, Comput. Chem. Eng..

[33]  Daniel Staak,et al.  Plant-wide Process Improvement in Cooperation of Mathematical Optimization using the MIPT Algorithm in ChemCADTM , 2014 .

[34]  Günter Wozny,et al.  MOSAIC a web-based modeling environment for code generation , 2011, Comput. Chem. Eng..

[35]  Yaprak Özbakır,et al.  Experimental and theoretical investigation of supercritical drying of silica alcogels , 2015 .

[36]  Günter Wozny,et al.  Extending Documentation‐Based Models towards an Efficient Integration into Commercial Process Simulators , 2014 .

[37]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[38]  Jochen Steimel,et al.  A framework for the modeling and optimization of process superstructures under uncertainty , 2014 .

[39]  Rafiqul Gani,et al.  Chemical product design: challenges and opportunities , 2004, Comput. Chem. Eng..

[40]  Günter Wozny,et al.  Superstructure Optimization: Reaction Yield Dependent CO2 Removal from OCM Product Gas , 2014 .

[41]  L. Petzold Differential/Algebraic Equations are not ODE's , 1982 .

[42]  G. Wozny,et al.  A standard interface for use of thermodynamics in process simulation , 1995 .

[43]  Dong Xu,et al.  A model-centric approach for the management of model evolution in chemical process modelling , 2007, Comput. Chem. Eng..

[44]  Yuji Naka,et al.  A life-cycle approach for model reuse and exchange , 2002 .

[45]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..

[46]  Günter Wozny,et al.  Systematic approaches for model derivation for optimization purposes , 2014 .

[47]  Andreas A. Linninger,et al.  Plant-Wide Waste Management. 2. Decision Making under Uncertainty , 2003 .

[48]  Volker Hessel,et al.  Novel Process Windows – Gate to Maximizing Process Intensification via Flow Chemistry , 2009 .

[49]  Rafiqul Gani,et al.  Computer-aided molecular design with combined molecular modeling and group contribution , 1999 .

[50]  Gürkan Sin,et al.  A computer-aided framework for development, identification and management of physiologically-based pharmacokinetic models , 2014, Comput. Chem. Eng..

[51]  Alexander W. Dowling,et al.  Degeneracy Hunter: An Algorithm for Determining Irreducible Sets of Degenerate Constraints in Mathematical Programs , 2015 .

[52]  C. Pantelides The consistent intialization of differential-algebraic systems , 1988 .

[53]  H. Arellano‐Garcia,et al.  Kinetics of 1-dodecene hydroformylation in a thermomorphic solvent system using a rhodium-biphephos catalyst , 2014 .

[54]  Arno Behr,et al.  Hydroformylation of 1-Dodecene in the Thermomorphic Solvent System Dimethylformamide/Decane. Phase Behavior–Reaction Performance–Catalyst Recycling , 2012 .

[55]  I. Grossmann,et al.  A systematic modeling framework of superstructure optimization in process synthesis , 1999 .

[56]  Achim Kienle,et al.  Nonlinear Analysis of gPROMS Models Using DIVA as via a CAPE ESO interface , 2002 .

[57]  I. T. Cameron,et al.  A survey of industrial process modelling across the product and process lifecycle , 2008, Comput. Chem. Eng..

[58]  Flavio Manenti,et al.  A Combination of Parallel Computing and Object-Oriented Programming to Improve Optimizer Robustness and Efficiency , 2010 .

[59]  Yue Wu,et al.  Production , Manufacturing and Logistics A robust optimization model for multi-site production planning problem in an uncertain environment , 2007 .

[60]  Jasper M. van Baten,et al.  CAPE‐OPEN: Interoperability in Industrial Flowsheet Simulation Software , 2014 .

[61]  Cheng Jiang,et al.  Towards computer-aided multiscale modelling: An overarching methodology and support of conceptual modelling , 2012, Comput. Chem. Eng..

[62]  Günter Wozny,et al.  MOSAIC: An Online Modeling Platform Supporting Automatic Discretization of Partial Differential Equation Systems , 2014 .

[63]  I. Grossmann,et al.  A disaggregation algorithm for the optimization of stochastic planning models , 1997 .

[64]  Harvey Arellano-Garcia,et al.  Optimal Operation of a Membrane Reactor Network , 2012 .

[65]  Ignacio E. Grossmann,et al.  Research challenges in process systems engineering , 2000 .

[66]  Graeme Fairweather,et al.  The Reformulation and Numerical Solution of Certain Nonclassical Initial-Boundary Value Problems , 1991, SIAM J. Sci. Comput..

[67]  Evaristo C. Biscaia,et al.  Direct methods for consistent initialization of DAE systems , 2001 .

[68]  Ignacio E. Grossmann,et al.  Superstructure optimization of the olefin separation process , 2003 .

[69]  Flavio Manenti,et al.  Efficient Numerical Solver for Partially Structured Differential and Algebraic Equation Systems , 2009 .

[70]  Stefan Palis,et al.  Development and Nonlinear Analysis of Dynamic Plant Models in ProMoT /Diana , 2014 .

[71]  Flavio Manenti,et al.  BzzMath: Library Overview and Recent Advances in Numerical Methods , 2012 .

[72]  Johan Grievink,et al.  Process intensification and process systems engineering: A friendly symbiosis , 2008, Comput. Chem. Eng..

[73]  Ignacio E. Grossmann,et al.  Global superstructure optimization for the design of integrated process water networks , 2011 .