A Description and Evaluation of Various 3-D Models

Overcoming the limitations of polygonal techniques, parametric representations of curved lines and surfaces have evolved into powerful tools for today's computer graphics modeling applications.

[1]  R. Riesenfeld,et al.  Bounds on a polynomial , 1981 .

[2]  I. J. Schoenberg,et al.  On Pólya frequency functions IV: The fundamental spline functions and their limits , 1966 .

[3]  I. J. Schoenberg Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae , 1946 .

[4]  Plerre Bézier Emploi des machines a commande numérique , 1970 .

[5]  Brian A. Barsky,et al.  Local Control of Bias and Tension in Beta-splines , 1983, TOGS.

[6]  S. A. Coons SURFACE PATCHES AND B-SPLINE CURVES , 1974 .

[7]  B. Barsky A Study of the Parametric Uniform B-spline Curve and Surface , 1983 .

[8]  W. J. Gordon,et al.  B-SPLINE CURVES AND SURFACES , 1974 .

[9]  I. Faux,et al.  Computational Geometry for Design and Manufacture , 1979 .

[10]  W. J. Gordon,et al.  Bernstein-Bézier Methods for the Computer-Aided Design of Free-Form Curves and Surfaces , 1974, JACM.

[11]  A. R. Forrest,et al.  On coons and other methods for the representation of curved surfaces , 1972, Comput. Graph. Image Process..

[12]  Barsky,et al.  Computer-Aided Geometric Design: A bibliography with Keywords and Classified Index , 1981, IEEE Computer Graphics and Applications.

[13]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[14]  P. Bézier MATHEMATICAL AND PRACTICAL POSSIBILITIES OF UNISURF , 1974 .

[15]  Tony DeRose,et al.  The Beta2-spline: A Special Case of the Beta-spline Curve and Surface Representation , 1983, IEEE Computer Graphics and Applications.

[16]  S. A. Coons SURFACES FOR COMPUTER-AIDED DESIGN OF SPACE FORMS , 1967 .

[17]  B. Barsky End conditions and boundary conditions for uniform B-spline curve and surface representations☆ , 1982 .

[18]  A. C. Hearn,et al.  REDUCE: a user-oriented interactive system for algebraic simplification , 1967, Symposium on Interactive Systems for Experimental Applied Mathematics.

[19]  B. Barsky The beta-spline: a local representation based on shape parameters and fundamental geometric measures , 1981 .

[20]  B. Barsky Varying the Betas in Beta-splines , 1982 .

[21]  Richard Franklin Riesenfeld,et al.  Applications of b-spline approximation to geometric problems of computer-aided design. , 1973 .

[22]  T. J. Rivlin Bounds on a polynomial , 1970 .