Modeling dominant height growth of radiata pine (Pinus radiata D. Don) plantations in north-western Spain

Abstract A model for predicting the height growth of radiata pine plantations in Galicia (north-western Spain) was developed. Data from stem analysis of 161 trees were used for model construction. Seven dynamic site equations derived with the generalized algebraic difference approach (GADA) were tested, which constitute compatible site index and height models in one common equation. All of the equations directly estimate height and site index from any other height and age, and are base-age invariant. To obtain unbiased parameter estimates the base-age invariant dummy variables method was used, which recognizes that each measurement is made with error and, thus, fits a curve to the observed individual trends in the data by considering one parameter to be site-specific and the remaining parameters common for all individuals. A second-order continuous-time autoregressive error structure was used to correct the inherent autocorrelation of the longitudinal data used in this study, which allows the model to be applied to irregularly spaced, unbalanced data. The GADA formulation derived on the basis of the Bertalanffy–Richards model by considering the asymptote and the initial pattern parameters as related to site productivity resulted in the best compromise between biological and statistical considerations, producing the most adequate site curves. This model showed superior behavior when compared to the model currently in use. It is, therefore, recommended for height growth prediction and site classification of radiata pine plantations in Galicia.

[1]  U. Diéguez-Aranda,et al.  Site quality equations for Pinus sylvestris L. plantations in Galicia (northwestern Spain) , 2005 .

[2]  S. Northway,et al.  Fitting site index equations and other self-referencing functions , 1985 .

[3]  M. E. Dyer,et al.  A Test of Six Methods for Estimating True Heights from Stem Analysis Data , 1987 .

[4]  F. Dorado Modelo dinámico de crecimiento para las masas de "Pinus radiata D. Don " en Galicia: simulación de alternativas selvícolas con inclusión del riesgo de incendio , 2004 .

[5]  K. Gadow,et al.  Evaluating standard treatment options for Pinus radiata plantations in Galicia (north‐western Spain) , 2002 .

[6]  Chris J. Cieszewski,et al.  Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes. , 2000 .

[7]  J.C.G. Goelz,et al.  Development of a well-behaved site index equation: jack pine in north central Ontario , 1992 .

[8]  Chris J. Cieszewski,et al.  Developing a well-behaved dynamic site equation using a modified Hossfeld IV function y3 = (axm)/(c + xm-1), a simplified mixed-model and scant subalpine fir data , 2003 .

[9]  R. H. Myers Classical and modern regression with applications , 1986 .

[10]  Greg S. Biging,et al.  Improved Estimates of Site Index Curves Using a Varying-Parameter Model , 1985 .

[11]  Dafydd Gibbon,et al.  1 User’s guide , 1998 .

[12]  F. J. Richards A Flexible Growth Function for Empirical Use , 1959 .

[13]  David R. Anderson,et al.  Model selection and inference : a practical information-theoretic approach , 2000 .

[14]  M. Kenward,et al.  Parametric modelling of growth curve data: An overview , 2001 .

[15]  Robert L. Bailey,et al.  Base-Age Invariant Polymorphic Site Curves , 1974 .

[16]  R. Powers,et al.  Site classification of ponderosa pine stands under stocking control in California , 1978 .

[17]  Bernard R. Parresol,et al.  White Pine Site Index for the Southern Forest Survey , 1998 .

[18]  D. Bates,et al.  Nonlinear mixed effects models for repeated measures data. , 1990, Biometrics.

[19]  C. Cieszewski,et al.  Base-age invariance and inventory projections , 2000 .

[20]  Timothy G. Gregoire,et al.  A non-linear mixed-effects model to predict cumulative bole volume of standing trees , 1996 .

[21]  L. Bertalanffy Problems of Organic Growth , 1949, Nature.

[22]  H. Burkhart,et al.  Top height definition and its effect on site index determination in thinned and unthinned loblolly pine plantations , 2002 .

[23]  Paula Soares,et al.  A critical look at procedures for validating growth and yield models. , 2003 .

[24]  A. Kozak,et al.  Does cross validation provide additional information in the evaluation of regression models , 2003 .

[25]  L. Bertalanffy Quantitative Laws in Metabolism and Growth , 1957 .

[26]  Terry E. Dielman,et al.  Pooled cross-sectional and time series data analysis , 1990 .

[27]  Jean Bégin,et al.  Estimation of total yield of Douglas fir by means of incomplete growth series , 1994 .

[28]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[29]  Yonghe Wang,et al.  Modified site index equations for major Canadian timber species , 1994 .

[30]  Chris J. Cieszewski,et al.  Three methods of deriving advanced dynamic site equations demonstrated on inland Douglas-fir site curves , 2001 .

[31]  Chris J. Cieszewski,et al.  Comparing Fixed- and Variable-Base-Age Site Equations Having Single Versus Multiple Asymptotes , 2002 .

[32]  F. Sánchez,et al.  Crecimiento y tablas de producción de Pinus radiata D. Don en Galicia , 2003 .

[33]  P. Duplat,et al.  Modélisation de la croissance en hauteur dominante du chêne sessile (Quercus petraea Liebl) en France. Variabilité inter-régionale et effet de la période récente (1959-1993) , 1997 .

[34]  W. H. Carmean,et al.  Site Index Curves for Upland Oaks in the Central States , 1972 .

[35]  Robert A. Monserud,et al.  Height Growth and Site Index Curves for Inland Douglas-fir Based on Stem Analysis Data and Forest Habitat Type , 1984 .

[36]  J. D. Newberry A note on Carmean's estimate of height from stem analysis data , 1991 .

[37]  P. Savill,et al.  Modelling dominant height growth of Douglas‐fir (Pseudotsuga menziesii (Mirb.) Franco) in Portugal , 2003 .

[38]  Marc E. McDill,et al.  Measuring Forest Site Quality Using the Parameters of a Dimensionally Compatible Height Growth Function , 1992 .

[39]  Chris J. Cieszewski,et al.  The stand dynamics of lodgepole pine , 1988 .

[40]  David A. Ratkowsky,et al.  Problems of hypothesis testing of regressions with multiple measurements from individual sampling units , 1984 .

[41]  Timothy G. Gregoire,et al.  Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements , 1995 .

[42]  Oscar García,et al.  A Stochastic Differential Equation Model for the Height Growth of Forest Stands , 1983 .

[43]  Chris J. Cieszewski,et al.  PRACTICAL METHODS FOR ESTIMATING NON-BIASED PARAMETERS IN SELF- REFERENCING GROWTH AND YIELD MODELS , 2000 .