The Bubble Transform and the de Rham Complex

The purpose of this paper is to discuss a generalization of the bubble transform to differential forms. The bubble transform was discussed in [19] for scalar valued functions, or zero-forms, and represents a new tool for the understanding of finite element spaces of arbitrary polynomial degree. The present paper contains a similar study for differential forms. From a simplicial mesh T of the domain Ω, we build a map which decomposes piecewise smooth k forms into a sum of local bubbles supported on appropriate macroelements. The key properties of the decomposition are that it commutes with the exterior derivative and preserves the piecewise polynomial structure of the standard finite element spaces of k-forms. Furthermore, the transform is bounded in L and also on the appropriate subspace consisting of k-forms with exterior derivatives in L.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Douglas N. Arnold,et al.  Local L2-bounded commuting projections in FEEC , 2021, ESAIM: Mathematical Modelling and Numerical Analysis.

[3]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[4]  Martin Vohralík,et al.  Equivalence of local-and global-best approximations, a simple stable local commuting projector, and optimal hp approximation estimates in H(div) , 2019, ArXiv.

[5]  D. Arnold Finite Element Exterior Calculus , 2018 .

[6]  Ralf Hiptmair,et al.  Discrete Compactness for the p-Version of Discrete Differential Forms , 2009, SIAM J. Numer. Anal..

[7]  Jens Markus Melenk,et al.  On commuting p-version projection-based interpolation on tetrahedra , 2018, Math. Comput..

[8]  D. Boffi,et al.  Mixed finite elements, compatibility conditions, and applications : lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 26-July 1, 2006 , 2008 .

[9]  Snorre H. Christiansen,et al.  Smoothed projections in finite element exterior calculus , 2007, Math. Comput..

[10]  Michel Fortin,et al.  Mixed Finite Elements, Compatibility Conditions, and Applications , 2008 .

[11]  Jens Markus Melenk,et al.  Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements , 2007 .

[12]  Rafael Muñoz-Sola,et al.  Polynomial Liftings on a Tetrahedron and Applications to the h - p Version of the Finite Element Method in Three Dimensions , 1997 .

[13]  Leszek Demkowicz,et al.  H1, H(curl) and H(div)-conforming projection-based interpolation in three dimensionsQuasi-optimal p-interpolation estimates , 2005 .

[14]  Ivo Babuška,et al.  The optimal convergence rate of the p-version of the finite element method , 1987 .

[15]  Richard S. Falk,et al.  Local bounded cochain projections , 2014, Math. Comput..

[16]  Douglas N. Arnold,et al.  Geometric decompositions and local bases for spaces of finite element differential forms , 2008, 0806.1255.

[17]  Leszek F. Demkowicz,et al.  p Interpolation Error Estimates for Edge Finite Elements of Variable Order in Two Dimensions , 2003, SIAM J. Numer. Anal..