A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes

[1]  R. Stephens,et al.  Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. , 2006, Cancer cell.

[2]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[4]  C. Croce,et al.  The role of microRNA genes in papillary thyroid carcinoma. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[6]  Phillip D Zamore,et al.  microPrimer: the biogenesis and function of microRNA , 2005, Development.

[7]  Muller Fabbri,et al.  A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. , 2005, The New England journal of medicine.

[8]  C. Croce,et al.  miR-15 and miR-16 induce apoptosis by targeting BCL2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  A. Pasquinelli,et al.  Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation , 2005, Cell.

[10]  C. Croce,et al.  MicroRNA gene expression deregulation in human breast cancer. , 2005, Cancer research.

[11]  K. Kosik,et al.  MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. , 2005, Cancer research.

[12]  H. Ruohola-Baker,et al.  Stem cell division is regulated by the microRNA pathway , 2005, Nature.

[13]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[14]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[15]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[16]  V. Kim MicroRNA biogenesis: coordinated cropping and dicing , 2005, Nature Reviews Molecular Cell Biology.

[17]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[18]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.

[19]  Shuang Huang,et al.  Involvement of MicroRNA in AU-Rich Element-Mediated mRNA Instability , 2005, Cell.

[20]  Wayne Tam,et al.  Accumulation of miR-155 and BIC RNA in human B cell lymphomas. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[22]  Eugene Berezikov,et al.  Phylogenetic Shadowing and Computational Identification of Human microRNA Genes , 2005, Cell.

[23]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[24]  Matthias John,et al.  Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs , 2004, Nature.

[25]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[26]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[27]  E. Lai Predicting and validating microRNA targets , 2004, Genome Biology.

[28]  C. Croce,et al.  MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  K. Helin,et al.  E2F target genes: unraveling the biology. , 2004, Trends in biochemical sciences.

[30]  Y. Yatabe,et al.  Reduced Expression of the let-7 MicroRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival , 2004, Cancer Research.

[31]  Hiroyuki Tagawa,et al.  Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. , 2004, Cancer research.

[32]  C. Croce,et al.  Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[34]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[35]  C. Ihm,et al.  Microsatellite alterations in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. , 2003, Cancer genetics and cytogenetics.

[36]  Michael Z Michael,et al.  Reduced accumulation of specific microRNAs in colorectal neoplasia. , 2003, Molecular cancer research : MCR.

[37]  M. Sulis,et al.  PTEN: from pathology to biology. , 2003, Trends in cell biology.

[38]  W. Tao,et al.  Lats2, a putative tumor suppressor, inhibits G1/S transition , 2003, Oncogene.

[39]  M. Barbacid,et al.  RAS oncogenes: the first 30 years , 2003, Nature Reviews Cancer.

[40]  T. Sano,et al.  Human pituitary adenomas infrequently contain inactivation of retinoblastoma 1 gene and activation of cyclin dependent kinase 4 gene. , 2003, Endocrine journal.

[41]  Itaru Matsumura,et al.  E2F1 and c-Myc in Cell Growth and Death , 2003, Cell cycle.

[42]  Andrea Cocito,et al.  Genomic targets of the human c-Myc protein. , 2003, Genes & development.

[43]  Bruce A. Hay,et al.  The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism , 2003, Current Biology.

[44]  R. Russell,et al.  bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila , 2003, Cell.

[45]  Patrick J. Paddison,et al.  An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo , 2003, Nature Genetics.

[46]  A. Sánchez-Aguilera,et al.  Cell cycle deregulation in B-cell lymphomas. , 2003, Blood.

[47]  C. Croce,et al.  Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[48]  W. S. Hayward,et al.  Avian bic, a Gene Isolated from a Common Retroviral Site in Avian Leukosis Virus-Induced Lymphomas That Encodes a Noncoding RNA, Cooperates with c-myc in Lymphomagenesis and Erythroleukemogenesis , 2002, Journal of Virology.

[49]  M. Goumans,et al.  Regulation of cell proliferation by Smad proteins , 2002, Journal of cellular physiology.

[50]  K. Helin,et al.  The role of p53 and pRB in apoptosis and cancer. , 2002, Current opinion in genetics & development.

[51]  H. Frierson,et al.  Loss of heterozygosity at 13q14 and 13q21 in high grade, high stage prostate cancer , 2001, The Prostate.

[52]  A Benner,et al.  Genomic aberrations and survival in chronic lymphocytic leukemia. , 2000, The New England journal of medicine.

[53]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[54]  B. Kempkes,et al.  Cell cycle activation by c‐myc in a Burkitt lymphoma model cell line , 2000, International journal of cancer.

[55]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[56]  S. Capaccioli,et al.  A conserved AU‐rich element in the 3’ untranslated region of bcl‐2 mRNA is endowed with a destabilizing function that is involved in bcl‐2 down‐regulation during apoptosis , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[57]  H. Moch,et al.  Chromosomal imbalances are associated with a high risk of progression in early invasive (pT1) urinary bladder cancer. , 1999, Cancer research.

[58]  Guan-Tarn Huang,et al.  Loss of heterozygosity at chromosome 13q in hepatocellular carcinoma: identification of three independent regions. , 1999, European journal of cancer.

[59]  S. Leung,et al.  Two distinct regions of deletion on chromosome 13q in primary nasopharyngeal carcinoma , 1999, International journal of cancer.

[60]  M. Cole,et al.  The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation , 1999, Oncogene.

[61]  Chi V. Dang,et al.  c-Myc Target Genes Involved in Cell Growth, Apoptosis, and Metabolism , 1999, Molecular and Cellular Biology.

[62]  J. Gudmundsson,et al.  Mapping loss of heterozygosity at chromosome 13q: loss at 13q12-q13 is associated with breast tumour progression and poor prognosis. , 1998, European journal of cancer.

[63]  H. Moses,et al.  Kips off to Myc: Implications for TGFβ signaling , 1997 .

[64]  Joseph R. Nevins,et al.  Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F , 1997, Nature.

[65]  S. Lowe,et al.  Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a , 1997, Cell.

[66]  W. S. Hayward,et al.  bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA , 1997, Molecular and cellular biology.

[67]  T. Jacks,et al.  Tumor Induction and Tissue Atrophy in Mice Lacking E2F-1 , 1996, Cell.

[68]  R. Weinberg E2F and Cell Proliferation: A World Turned Upside Down , 1996, Cell.

[69]  C. Y. Chen,et al.  AU-rich elements: characterization and importance in mRNA degradation. , 1995, Trends in biochemical sciences.

[70]  J. Nevins,et al.  Oncogenic capacity of the E2F1 gene. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[71]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[72]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[73]  J. Trent,et al.  WAF1, a potential mediator of p53 tumor suppression , 1993, Cell.

[74]  Reuven Agami,et al.  A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. , 2006, Cell.

[75]  Stefano Volinia,et al.  Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[76]  林下 陽二 A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation , 2006 .

[77]  R. Aharonov,et al.  Identification of hundreds of conserved and nonconserved human microRNAs , 2005, Nature Genetics.

[78]  H. Moses,et al.  Kips off to Myc: implications for TGF beta signaling. , 1997, Journal of cellular biochemistry.