Proofs and Computations

Driven by the question, 'What is the computational content of a (formal) proof?', this book studies fundamental interactions between proof theory and computability. It provides a unique self-contained text for advanced students and researchers in mathematical logic and computer science. Part I covers basic proof theory, computability and Gdel's theorems. Part II studies and classifies provable recursion in classical systems, from fragments of Peano arithmetic up to 11-CA0. Ordinal analysis and the (Schwichtenberg-Wainer) subrecursive hierarchies play a central role and are used in proving the 'modified finite Ramsey' and 'extended Kruskal' independence results for PA and 11-CA0. Part III develops the theoretical underpinnings of the first author's proof assistant MINLOG. Three chapters cover higher-type computability via information systems, a constructive theory TCF of computable functionals, realizability, Dialectica interpretation, computationally significant quantifiers and connectives and polytime complexity in a two-sorted, higher-type arithmetic with linear logic.

[1]  L. Dickson Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors , 1913 .

[2]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[3]  Haskell B. Curry Grundlagen der kombinatorischen Logik , 1930 .

[4]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[5]  F. Ramsey The foundations of mathematics , 1932 .

[6]  A. Kolmogoroff Zur Deutung der intuitionistischen Logik , 1932 .

[7]  P. Bernays,et al.  Grundlagen der Mathematik , 1934 .

[8]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[9]  Alfred Tarski,et al.  Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .

[10]  Alonzo Church,et al.  A note on the Entscheidungsproblem , 1936, Journal of Symbolic Logic.

[11]  J. Barkley Rosser,et al.  Extensions of some theorems of Gödel and Church , 1936, Journal of Symbolic Logic.

[12]  G. Gentzen Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .

[13]  W. V. Quine,et al.  Der Minimalkalkul, ein Reduzierter Intutionistischer Formalismus. , 1937 .

[14]  Wilhelm Ackermann,et al.  Zur Widerspruchsfreiheit der Zahlentheorie , 1940 .

[15]  M. Newman On Theories with a Combinatorial Definition of "Equivalence" , 1942 .

[16]  G. Gentzen,et al.  Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie , 1943 .

[17]  R. L. Goodstein,et al.  On the restricted ordinal theorem , 1944, Journal of Symbolic Logic.

[18]  K. Schütte Beweistheoretische Erfassung der unendlichen Induktion in der Zahlentheorie , 1950 .

[19]  Georg Kreisel,et al.  On the interpretation of non-finitist proofs—Part I , 1951, Journal of Symbolic Logic.

[20]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[21]  M. H. Lob,et al.  Solution of a Problem of Leon Henkin , 1955, J. Symb. Log..

[22]  S. C. Kleene,et al.  Extension of an effectively generated class of functions by enumeration , 1958 .

[23]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[24]  John McCarthy,et al.  A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 1) , 2018 .

[25]  S. Feferman Arithmetization of metamathematics in a general setting , 1959 .

[26]  A theorem on general recursive functions , 1960 .

[27]  J. Kruskal Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture , 1960 .

[28]  Solomon Feferman,et al.  CLASSIFICATIONS OF RECURSIVE FUNCTIONS BY MEANS OF HIERARCHIES( , 1962 .

[29]  John C. Shepherdson,et al.  Computability of Recursive Functions , 1963, JACM.

[30]  J. P. Cleave,et al.  A Hierarchy of Primitive Recursive Functions , 1963 .

[31]  Robert W. Ritchie,et al.  CLASSES OF PREDICTABLY COMPUTABLE FUNCTIONS , 1963 .

[32]  A. Grzegorczyk Some classes of recursive functions , 1964 .

[33]  Wayne Richter,et al.  Extensions of the constructive ordinals , 1965, Journal of Symbolic Logic.

[34]  Saul A. Kripke,et al.  Semantical Analysis of Intuitionistic Logic I , 1965 .

[35]  Gaisi Takeuti,et al.  Consistency Proofs of Subsystems of Classical Analysis , 1967 .

[36]  D. Rödding,et al.  Klassen rekursiver funktionen , 1968 .

[37]  Georg Kreisel,et al.  Reflection Principles and Their Use for Establishing the Complexity of Axiomatic Systems , 1968 .

[38]  William W. Tait,et al.  Normal derivability in classical logic , 1968 .

[39]  Stephen A. Cook,et al.  Review: Alan Cobham, Yehoshua Bar-Hillel, The Intrinsic Computational Difficulty of Functions , 1969 .

[40]  S. S. Wainer,et al.  A classification of the ordinal recursive functions , 1970 .

[41]  S. Wainer,et al.  Hierarchies of number-theoretic functions II , 1970 .

[42]  S. Feferman Formal Theories for Transfinite Iterations of Generalized Inductive Definitions and Some Subsystems of Analysis , 1970 .

[43]  W. A. Howard Assignment of Ordinals to Terms for Primitive Recursive Functionals of Finite Type , 1970 .

[44]  S. Wainer,et al.  Hierarchies of number-theoretic functions. I , 1970 .

[45]  Helmut Schwichtenberg Eine Klassifikation der e0-rekursiven Funktionen , 1971 .

[46]  P. Martin-Löf Hauptsatz for the Intuitionistic Theory of Iterated Inductive Definitions , 1971 .

[47]  D. Dalen Review: Georg Kreisel, Godel's Intepretation of Heyting's Arithmetic; G. Kreisel, Relations Between Classes of Constructive Functionals; Georg Kreisel, A. Heyting, Interpretation of Analysis by Means of Constructive Functionals of Finite Types , 1971 .

[48]  W. Tait Normal Form Theorem for Bar Recursive Functions of Finite Type , 1971 .

[49]  Robert L. Constable,et al.  Subrecursive Programming Languages. II. On Program Size , 1971, J. Comput. Syst. Sci..

[50]  J. Girard Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .

[51]  Allan Borodin,et al.  Subrecursive Programming Languages, Part I: efficiency and program structure , 1972, JACM.

[52]  Stanley S. Wainer,et al.  Ordinal recursion, and a refinement of the extended Grzegorczyk hierarchy , 1972, Journal of Symbolic Logic.

[53]  Carl G. Jockusch,et al.  Ramsey's theorem and recursion theory , 1972, Journal of Symbolic Logic.

[54]  Per Martin-Löf,et al.  Infinite terms and a system of natural deduction , 1972 .

[55]  de Ng Dick Bruijn Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[56]  Charles D. Parsons,et al.  On n-quantifier induction , 1972, Journal of Symbolic Logic.

[57]  Yu. L. Ershov Everywhere-defined continuous functionals , 1972 .

[58]  G. E. Mints Quantifier-free and one-quantifier systems , 1972 .

[59]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[60]  Horst Luckhardt,et al.  Generalized inductive definitions , 1973 .

[61]  Jeffery I. Zucker Iterated inductive definitions, trees and ordinals , 1973 .

[62]  J. Diller Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen , 1974 .

[63]  G. Takeuti Proof Theory , 1975 .

[64]  Helmut Schwichtenberg,et al.  Elimination of higher type levels in definitions of primitive recursive functionals , 1975 .

[65]  Andreas Weiermann,et al.  A CLASSIFICATION OF RAPIDLY GROWING RAMSEY FUNCTIONS , 1976 .

[66]  Constructive operators of finite types , 1976 .

[67]  Fred Zemke,et al.  P.R.-regulated systems of notation and the subrecursive hierarchy equivalence property , 1977 .

[68]  G.D. Plotkin,et al.  LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..

[69]  Kurt Schütte Proof theory , 1977 .

[70]  H. Schwichtenberg Proof Theory: Some Applications of Cut-Elimination , 1977 .

[71]  J. Paris A Mathematical Incompleteness in Peano Arithmetic , 1977 .

[72]  Diana Schmidt,et al.  Built-up systems of fundamental sequences and hierarchies of number-theoretic functions , 1977, Arch. Math. Log..

[73]  Wilfried Buchholz,et al.  Provable wellorderings of formal theories for transfinitely iterated inductive definitions , 1978 .

[74]  R. Statman Bounds for proof-search and speed-up in the predicate calculus , 1978 .

[75]  G. Plotkin Tω as a Universal Domain , 1978 .

[76]  Martin Stein Interpretationen der Heyting-Arithmetik endlicher Typen , 1978, Arch. Math. Log..

[77]  Harvey M. Friedman,et al.  Classically and intuitionistically provably recursive functions , 1978 .

[78]  G. Mints,et al.  Finite investigations of transfinite derivations , 1978 .

[79]  N. Cutland Computability: An Introduction to Recursive Function Theory , 1980 .

[80]  Jeff B. Paris,et al.  A Hierarchy of Cuts in Models of Arithmetic , 1980 .

[81]  W. Buchholz Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-theoretical Studies , 1981 .

[82]  Jean-Yves Girard,et al.  Π12-logic, Part 1: Dilators , 1981 .

[83]  Jussi KETONENt,et al.  Rapidly growing Ramsey functions , 1981 .

[84]  V. Orevkov Lower bounds for increasing complexity of derivations after cut elimination , 1982 .

[85]  J. Paris,et al.  Accessible Independence Results for Peano Arithmetic , 1982 .

[86]  D. Scott Domains for Denotational Semantics , 1982, ICALP.

[87]  Solomon Feferman,et al.  Iterated Inductive Fixed-Point Theories: Application to Hancock's Conjecture , 1982 .

[88]  Mariangiola Dezani-Ciancaglini,et al.  A filter lambda model and the completeness of type assignment , 1983, Journal of Symbolic Logic.

[89]  H. E. Rose Subrecursion: Functions and Hierarchies , 1984 .

[90]  Peter Schroeder-Heister,et al.  A natural extension of natural deduction , 1984, Journal of Symbolic Logic.

[91]  Per Martin-Löf,et al.  Intuitionistic type theory , 1984, Studies in proof theory.

[92]  Cliff B. Jones,et al.  An Early Program Proof by Alan Turing , 1984, Annals of the History of Computing.

[93]  Daniel Leivant,et al.  Syntactic translations and provably recursive functions , 1985, Journal of Symbolic Logic.

[94]  Wilfried Sieg,et al.  Fragments of arithmetic , 1985, Ann. Pure Appl. Log..

[95]  Stephen G. Simpson,et al.  Nonprovability of Certain Combinatorial Properties of Finite Trees , 1985 .

[96]  Gerhard Max Jäger,et al.  Theories for admissible sets : a unifying approach to proof theory , 1986 .

[97]  Wilfried Buchholz,et al.  An independence result for (II11-CA)+BI , 1987, Ann. Pure Appl. Log..

[98]  R. Soare Recursively enumerable sets and degrees , 1987 .

[99]  Matthias Felleisen,et al.  A Syntactic Theory of Sequential Control , 1987, Theor. Comput. Sci..

[100]  S. Wainer,et al.  Provably computable functions and the fast growing hierarchy , 1987 .

[101]  Samson Abramsky,et al.  Domain Theory in Logical Form , 1991, LICS.

[102]  Jan Łukasiewicz,et al.  On the principle of the excluded middle , 1987 .

[103]  Tatsuya Hagino,et al.  A Typed Lambda Calculus with Categorical Type Constructors , 1987, Category Theory and Computer Science.

[104]  A. Troelstra,et al.  Constructivism in Mathematics: An Introduction , 1988 .

[105]  Harold Simmons,et al.  The realm of primitive recursion , 1988, Arch. Math. Log..

[106]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .

[107]  J. Girard Proof Theory and Logical Complexity , 1989 .

[108]  Stanley S. Wainer Slow Growing Versus Fast Growing , 1989, J. Symb. Log..

[109]  Timothy G. Griffin,et al.  A formulae-as-type notion of control , 1989, POPL '90.

[110]  Bruce M. Kapron,et al.  Characterizations of the basic feasible functionals of finite type , 1989, 30th Annual Symposium on Foundations of Computer Science.

[111]  Chetan R. Murthy Extracting Constructive Content From Classical Proofs , 1990 .

[112]  J. Spencer Ramsey Theory , 1990 .

[113]  C. Smorynski Logical Number Theory I , 1991 .

[114]  Ulrich Berger,et al.  An inverse of the evaluation functional for typed lambda -calculus , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[115]  Glynn Winskel,et al.  Using Information Systems to Solve Recursive Domain Equations , 1991, Inf. Comput..

[116]  Chetan R. Murthy,et al.  Finding computational content in classical proofs , 1991 .

[117]  Wilfried Sieg Herbrand analyses , 1991, Arch. Math. Log..

[118]  Toshiyasu Arai A Slow Growing Analogue to Buchholz' Proof , 1991, Ann. Pure Appl. Log..

[119]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[120]  Robert Hieb,et al.  The Revised Report on the Syntactic Theories of Sequential Control and State , 1992, Theor. Comput. Sci..

[121]  S. S. Wainer,et al.  Ordinal Complexity of Recursive Definitions , 1992, Inf. Comput..

[122]  Solomon Feferman,et al.  Logics for Termination and Correctness of Functional Programs , 1993 .

[123]  Bezem,et al.  Ramsey's theorem and the pigeonhole principle in intuitionistic mathematics , 1993 .

[124]  Michael Rathjen A Proof-Theoretic Characterization of the Primitive Recursive Set Functions , 1992, J. Symb. Log..

[125]  Peter Aczel,et al.  Proof Theory: Some Applications of Cut-Elimination , 1977 .

[126]  J. V. Tucker,et al.  Provable computable selection functions of abstract structures , 1993 .

[127]  Michael Rathjen,et al.  How to Develop Proof-Theoretic Ordinal Functions on the Basis of Admissible Ordinals , 1993, Math. Log. Q..

[128]  Noriya Kadota On Wainer's Notation for a Minimal Subrecursive Inaccessible Ordinal , 1993, Math. Log. Q..

[129]  H. Schwichtenberg Proofs as programs , 1993 .

[130]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.

[131]  Stefano Berardi,et al.  Extracting Constructive Content from Classical Logic via Control-like Reductions , 1993, TLCA.

[132]  Zygmunt Ratajczyk,et al.  Subsystems of True Arithmetic and Hierarchies of Functions , 1993, Ann. Pure Appl. Log..

[133]  Petr Hájek,et al.  Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.

[134]  Ulrich Berger,et al.  Total Sets and Objects in Domain Theory , 1993, Ann. Pure Appl. Log..

[135]  Daniel Leivant,et al.  Lambda Calculus Characterizations of Poly-Time , 1993, Fundam. Informaticae.

[136]  P. Clote,et al.  Arithmetic, proof theory, and computational complexity , 1993 .

[137]  Michael Rathjen,et al.  Proof-Theoretic Investigations on Kruskal's Theorem , 1993, Ann. Pure Appl. Log..

[138]  Viggo Stoltenberg-Hansen,et al.  Mathematical theory of domains , 1994, Cambridge tracts in theoretical computer science.

[139]  Ulrich Berger,et al.  Program Extraction from Classical Proofs , 1994, LCC.

[140]  Jean-Louis Krivine,et al.  Classical Logic, Storage Operators and Second-Order lambda-Calculus , 1994, Ann. Pure Appl. Log..

[141]  Andreas Weiermann,et al.  A Uniform Approach to Fundamental Sequences and Hierarchies , 1994, Math. Log. Q..

[142]  Daniel Leivant Predicative Recurrence in Finite Types , 1994, LFCS.

[143]  Daniel Leivant,et al.  Intrinsic Theories and Computational Complexity , 1994, LCC.

[144]  Jaco van de Pol Two Different Strong Normalization Proofs? , 1995, HOA.

[145]  Paula Severi,et al.  On normalisation , 1995 .

[146]  Ulrich Berger,et al.  The Greatest Common Divisor: A Case Study for Program Extraction from Classical Proofs , 1995, TYPES.

[147]  P. Clote,et al.  First Order Bounded Arithmetic and Small Boolean Circuit Complexity Classes , 1995 .

[148]  Andreas Weiermann,et al.  Investigations on slow versus fast growing: How to majorize slow growing functions nontrivially by fast growing ones , 1995, Arch. Math. Log..

[149]  Helmut Schwichtenberg,et al.  Ordinal Bounds for Programs , 1995 .

[150]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[151]  Richard Sommer,et al.  Transfinite Induction within Peano Arithmetic , 1995, Ann. Pure Appl. Log..

[152]  Samuel R. Buss,et al.  The witness function method and provably recursive functions of peano arithmetic , 1995 .

[153]  Harvey M. Friedman,et al.  Elementary Descent Recursion and Proof Theory , 1995, Ann. Pure Appl. Log..

[154]  Masako Takahashi Parallel Reductions in lambda-Calculus , 1995, Inf. Comput..

[155]  D. Leivant Ramified Recurrence and Computational Complexity I: Word Recurrence and Poly-time , 1995 .

[156]  U. Kohlenbach Analysing proofs in analysis , 1996 .

[157]  Solomon Feferman Computation on Abstract Data Types: The Extensional Approach, with an Application to Streams , 1996, Ann. Pure Appl. Log..

[158]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[159]  Arnold Beckmann,et al.  A term rewriting characterization of the polytime functions and related complexity classes , 1996, Arch. Math. Log..

[160]  Andreas Weiermann,et al.  How to characterize provably total functions by local predicativity , 1996, Journal of Symbolic Logic.

[161]  S. Wainer,et al.  Axioms for subrecursion theories , 1996 .

[162]  Helmut SchwichtenbergMathematisches,et al.  Density and Choice for Total Continuous Functionals* 1. Information Systems , 1996 .

[163]  Thomas Strahm Polynomial Time Operations in Explicit Mathematics , 1997, J. Symb. Log..

[164]  Yiannis N. Moschovakis,et al.  The Logic of Functional Recursion , 1997 .

[165]  Jeremy Avigad,et al.  A Model-Theoretic Approach to Ordinal Analysis , 1997, Bulletin of Symbolic Logic.

[166]  Dag Normann,et al.  Total objects in inductively defined types , 1997, Arch. Math. Log..

[167]  Samuel R. Buss,et al.  Chapter II - First-Order Proof Theory of Arithmetic , 1998 .

[168]  Roberto M. Amadio,et al.  Domains and lambda-calculi , 1998, Cambridge tracts in theoretical computer science.

[169]  Stanley S. Wainer,et al.  Chapter III - Hierarchies of Provably Recursive Functions , 1998 .

[170]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..

[171]  A. Wilkie THE CLASSICAL DECISION PROBLEM (Perspectives in Mathematical Logic) By Egon Börger, Erich Grädel and Yuri Gurevich: 482 pp., DM.158.–, ISBN 3 540 57073 X (Springer, 1997). , 1998 .

[172]  Thierry Coquand,et al.  Gröbner Bases in Type Theory , 1998, TYPES.

[173]  S. Buss Handbook of proof theory , 1998 .

[174]  W. Pohlers Chapter IV – Subsystems of Set Theory and Second Order Number Theory , 1998 .

[175]  W. G. Handley,et al.  Complexity of Primitive Recursion , 1999 .

[176]  A Semantic Account of Type-Directed Partial Evaluation , 1999 .

[177]  Gerhard Jäger,et al.  The Proof-Theoretic Analysis of Transfinitely Iterated Fixed Point Theories , 1999, J. Symb. Log..

[178]  Jean-Pierre Jouannaud,et al.  The Calculus of algebraic Constructions , 1999, RTA.

[179]  Viggo Stoltenberg-Hansen,et al.  Computable Rings and Fields , 1999, Handbook of Computability Theory.

[180]  Martin Hofmann,et al.  Linear types and non-size-increasing polynomial time computation , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[181]  John K. Truss,et al.  What Makes A (Pointwise) Subrecursive Hierarchy Slow Growing , 1999 .

[182]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[183]  Stanley S. Wainer Accessible recursive functions , 1999, Bull. Symb. Log..

[184]  Martin Hofmann,et al.  A new method for establishing conservativity of classical systems over their intuitionistic version , 1999, Mathematical Structures in Computer Science.

[185]  Hajime Ishihara A Note on the Gödel-Gentzen Translation , 2000, Math. Log. Q..

[186]  G. Mints A Short Introduction to Intuitionistic Logic , 2000 .

[187]  Toshiyasu Arai,et al.  Ordinal diagrams for recursively Mahlo universes , 2000, Arch. Math. Log..

[188]  The unfolding of non-finitist arithmetic , 2000, Ann. Pure Appl. Log..

[189]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[190]  H. Ishihara A Note on theGödel-Gentzen Translation , 2000 .

[191]  Martin Hofmann Safe recursion with higher types and BCK-algebra , 2000, Ann. Pure Appl. Log..

[192]  Helmut Schwichtenberg,et al.  Higher type recursion, ramification and polynomial time , 2000, Ann. Pure Appl. Log..

[193]  Dag Normann Computability over The Partial Continuous Functionals , 2000, J. Symb. Log..

[194]  Jeremy Avigad,et al.  Interpreting classical theories in constructive ones , 2000, Journal of Symbolic Logic.

[195]  Sara Negri,et al.  Structural proof theory , 2001 .

[196]  Timothy J. Carlson,et al.  Elementary patterns of resemblance , 2001, Ann. Pure Appl. Log..

[197]  Alexandre Miquel The Implicit Calculus of Constructions , 2001, TLCA.

[198]  J. V. Tucker,et al.  Computable functions and semicomputable sets on many-sorted algebras , 2001, Logic in Computer Science.

[199]  Jean-Yves Marion Actual Arithmetic and Feasibility , 2001, CSL.

[200]  Isabel Oitavem Implicit Characterizations of Pspace , 2001, Proof Theory in Computer Science.

[201]  Helmut Schwichtenberg,et al.  Feasible Computation with Higher Types , 2002 .

[202]  P. Daniel Hestand,et al.  Mathematical theory of domains , 2002, SIGA.

[203]  Andrea Cantini Polytime, combinatory logic and positive safe induction , 2002, Arch. Math. Log..

[204]  Paulo Oliva,et al.  Proof Mining: A Systematic Way of Analysing Proofs in Mathematics , 2002 .

[205]  Helmut Schwichtenberg,et al.  Refined program extraction form classical proofs , 2002, Ann. Pure Appl. Log..

[206]  Martin Hofmann,et al.  A New "Feasible" Arithmetic , 2002, J. Symb. Log..

[207]  Paulo Oliva,et al.  Proof mining in L1-approximation , 2003, Ann. Pure Appl. Log..

[208]  Thierry Coquand,et al.  Inductively generated formal topologies , 2003, Ann. Pure Appl. Log..

[209]  Samuel R. Buss,et al.  Ordinal notations and well-orderings in bounded arithmetic , 2003, Ann. Pure Appl. Log..

[210]  Ulrich Berger,et al.  Term rewriting for normalization by evaluation , 2003, Inf. Comput..

[211]  Ulrich Kohlenbach,et al.  Mann iterates of directionally nonexpansive mappings in hyperbolic spaces , 2002 .

[212]  Lev D. Beklemishev,et al.  Proof-theoretic analysis by iterated reflection , 2003, Arch. Math. Log..

[213]  Ralph Matthes,et al.  Short proofs of normalization for the simply- typed λ-calculus, permutative conversions and Gödel's T , 2003, Arch. Math. Log..

[214]  Douglas S. Bridges,et al.  Constructivity in Mathematics , 2004 .

[215]  Thomas Strahm,et al.  A proof-theoretic characterization of the basic feasible functionals , 2004, Theor. Comput. Sci..

[216]  W. Vasconcelos,et al.  On the complexity of the integral closure , 2004 .

[217]  Christophe Raffalli Getting results from programs extracted from classical proofs , 2004, Theor. Comput. Sci..

[218]  Ulrich Kohlenbach,et al.  Some logical metatheorems with applications in functional analysis , 2003 .

[219]  Ulrich Berger,et al.  The Warshall Algorithm and Dickson's Lemma: Two Examples of Realistic Program Extraction , 2004, Journal of Automated Reasoning.

[220]  Stanley S. Wainer,et al.  Inductive definitions over a predicative arithmetic , 2005, Ann. Pure Appl. Log..

[221]  Herman Ruge Jervell Finite Trees as Ordinals , 2005, CiE.

[222]  Ulrich Berger,et al.  Continuous Semantics for Strong Normalization , 2005, CiE.

[223]  Helmut Schwichtenberg A Direct Proof of the Equivalence between Brouwer's Fan Theorem and König's Lemma with a Uniqueness Hypothesis , 2005, J. Univers. Comput. Sci..

[224]  Klaus Aehlig,et al.  An elementary fragment of second-order lambda calculus , 2002, TOCL.

[225]  Andreas Weiermann Analytic combinatorics, proof-theoretic ordinals, and phase transitions for independence results , 2005, Ann. Pure Appl. Log..

[226]  Paulo Oliva,et al.  Unifying Functional Interpretations , 2006, Notre Dame J. Formal Log..

[227]  Ulrich Berger,et al.  Uniform Heyting arithmetic , 2005, Ann. Pure Appl. Log..

[228]  Hajime Ishihara,et al.  Brouwer's fan theorem and unique existence in constructive analysis , 2005, Math. Log. Q..

[229]  Stephen A. Cook,et al.  A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.

[230]  Stanley S. Wainer,et al.  Elementary arithmetic , 2005, Ann. Pure Appl. Log..

[231]  Michael Rathjen An ordinal analysis of parameter free Π12-comprehension , 2005, Arch. Math. Log..

[232]  Ulrich Berger,et al.  Program Extraction from Normalization Proofs , 2006, Stud Logica.

[233]  Dag Normann,et al.  Computing with Functionals—Computability Theory or Computer Science? , 2006, Bulletin of Symbolic Logic.

[234]  F. Wiedijk The Seventeen Provers of the World , 2006 .

[235]  Thierry Coquand,et al.  A Proof of Strong Normalisation using Domain Theory , 2006, LICS.

[236]  Andreas Weiermann,et al.  Classifying the Provably Total Functions of PA , 2006, Bulletin of Symbolic Logic.

[237]  Helmut Schwichtenberg An arithmetic for polynomial-time computation , 2006, Theor. Comput. Sci..

[238]  Michael Rathjen,et al.  The Realm of Ordinal Analysis , 2007 .

[239]  U. Kohlenbach,et al.  General logical metatheorems for functional analysis , 2005 .

[240]  H. Schwichtenberg Logic Colloquium 2005: Recursion on the partial continuous functionals , 2007 .

[241]  Andrey Bovykin,et al.  Brief introduction to unprovability , 2007 .

[242]  Andreas Weiermann,et al.  Phase transition thresholds for some Friedman‐style independence results , 2007, Math. Log. Q..

[243]  Helmut Schwichtenberg,et al.  Realizability interpretation of proofs in constructive analysis , 2008, Theory of Computing Systems.

[244]  Jeffery I. Zucker,et al.  Primitive recursive selection functions for existential assertions over abstract algebras , 2008, J. Log. Algebraic Methods Program..

[245]  Helmut Schwichtenberg Dialectica interpretation of well-founded induction , 2008, Math. Log. Q..

[246]  Ulrich Kohlenbach,et al.  Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.

[247]  Jan von Plato,et al.  Gentzen's Proof of Normalization for Natural Deduction , 2008, Bull. Symb. Log..

[248]  Trifon Trifonov Dialectica Interpretation with Fine Computational Control , 2009, CiE.

[249]  Maribel Fernández The Lambda Calculus , 2009 .

[250]  Helmut Schwichtenberg,et al.  Decorating proofs , 2009 .

[251]  C. McCarty CONSTRUCTIVISM IN MATHEMATICS , 2009 .

[252]  Ulrich Berger,et al.  From Coinductive Proofs to Exact Real Arithmetic , 2009, CSL.

[253]  Solomon Feferman,et al.  Unfolding Finitist Arithmetic , 2010, Rev. Symb. Log..

[254]  Ulrich Berger,et al.  Proofs, Programs, Processes , 2010, CiE.

[255]  George b. Wentworth New Elementary Arithmetic , 2010 .

[256]  Trifon Trifonov,et al.  Light Dialectica revisited , 2010, Ann. Pure Appl. Log..

[257]  Stanley S. Wainer Computing Bounds from Arithmetical Proofs , 2010 .

[258]  Kenji Miyamoto,et al.  Minlog - A Tool for Program Extraction Supporting Algebras and Coalgebras , 2011, CALCO.

[259]  Thierry Coquand,et al.  Unique paths as formal points , 2011, J. Log. Anal..

[260]  Tristan Crolard,et al.  Deriving a Hoare-Floyd logic for non-local jumps from a formulae-as-types notion of control , 2011, ArXiv.

[261]  Hans Jürgen Prömel,et al.  Rapidly Growing Ramsey Functions , 2013 .