Proofs and Computations
暂无分享,去创建一个
[1] L. Dickson. Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors , 1913 .
[2] Frank Plumpton Ramsey,et al. On a Problem of Formal Logic , 1930 .
[3] Haskell B. Curry. Grundlagen der kombinatorischen Logik , 1930 .
[4] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[5] F. Ramsey. The foundations of mathematics , 1932 .
[6] A. Kolmogoroff. Zur Deutung der intuitionistischen Logik , 1932 .
[7] P. Bernays,et al. Grundlagen der Mathematik , 1934 .
[8] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[9] Alfred Tarski,et al. Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .
[10] Alonzo Church,et al. A note on the Entscheidungsproblem , 1936, Journal of Symbolic Logic.
[11] J. Barkley Rosser,et al. Extensions of some theorems of Gödel and Church , 1936, Journal of Symbolic Logic.
[12] G. Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .
[13] W. V. Quine,et al. Der Minimalkalkul, ein Reduzierter Intutionistischer Formalismus. , 1937 .
[14] Wilhelm Ackermann,et al. Zur Widerspruchsfreiheit der Zahlentheorie , 1940 .
[15] M. Newman. On Theories with a Combinatorial Definition of "Equivalence" , 1942 .
[16] G. Gentzen,et al. Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie , 1943 .
[17] R. L. Goodstein,et al. On the restricted ordinal theorem , 1944, Journal of Symbolic Logic.
[18] K. Schütte. Beweistheoretische Erfassung der unendlichen Induktion in der Zahlentheorie , 1950 .
[19] Georg Kreisel,et al. On the interpretation of non-finitist proofs—Part I , 1951, Journal of Symbolic Logic.
[20] S. C. Kleene,et al. Introduction to Metamathematics , 1952 .
[21] M. H. Lob,et al. Solution of a Problem of Leon Henkin , 1955, J. Symb. Log..
[22] S. C. Kleene,et al. Extension of an effectively generated class of functions by enumeration , 1958 .
[23] Von Kurt Gödel,et al. ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .
[24] John McCarthy,et al. A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 1) , 2018 .
[25] S. Feferman. Arithmetization of metamathematics in a general setting , 1959 .
[26] A theorem on general recursive functions , 1960 .
[27] J. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture , 1960 .
[28] Solomon Feferman,et al. CLASSIFICATIONS OF RECURSIVE FUNCTIONS BY MEANS OF HIERARCHIES( , 1962 .
[29] John C. Shepherdson,et al. Computability of Recursive Functions , 1963, JACM.
[30] J. P. Cleave,et al. A Hierarchy of Primitive Recursive Functions , 1963 .
[31] Robert W. Ritchie,et al. CLASSES OF PREDICTABLY COMPUTABLE FUNCTIONS , 1963 .
[32] A. Grzegorczyk. Some classes of recursive functions , 1964 .
[33] Wayne Richter,et al. Extensions of the constructive ordinals , 1965, Journal of Symbolic Logic.
[34] Saul A. Kripke,et al. Semantical Analysis of Intuitionistic Logic I , 1965 .
[35] Gaisi Takeuti,et al. Consistency Proofs of Subsystems of Classical Analysis , 1967 .
[36] D. Rödding,et al. Klassen rekursiver funktionen , 1968 .
[37] Georg Kreisel,et al. Reflection Principles and Their Use for Establishing the Complexity of Axiomatic Systems , 1968 .
[38] William W. Tait,et al. Normal derivability in classical logic , 1968 .
[39] Stephen A. Cook,et al. Review: Alan Cobham, Yehoshua Bar-Hillel, The Intrinsic Computational Difficulty of Functions , 1969 .
[40] S. S. Wainer,et al. A classification of the ordinal recursive functions , 1970 .
[41] S. Wainer,et al. Hierarchies of number-theoretic functions II , 1970 .
[42] S. Feferman. Formal Theories for Transfinite Iterations of Generalized Inductive Definitions and Some Subsystems of Analysis , 1970 .
[43] W. A. Howard. Assignment of Ordinals to Terms for Primitive Recursive Functionals of Finite Type , 1970 .
[44] S. Wainer,et al. Hierarchies of number-theoretic functions. I , 1970 .
[45] Helmut Schwichtenberg. Eine Klassifikation der e0-rekursiven Funktionen , 1971 .
[46] P. Martin-Löf. Hauptsatz for the Intuitionistic Theory of Iterated Inductive Definitions , 1971 .
[47] D. Dalen. Review: Georg Kreisel, Godel's Intepretation of Heyting's Arithmetic; G. Kreisel, Relations Between Classes of Constructive Functionals; Georg Kreisel, A. Heyting, Interpretation of Analysis by Means of Constructive Functionals of Finite Types , 1971 .
[48] W. Tait. Normal Form Theorem for Bar Recursive Functions of Finite Type , 1971 .
[49] Robert L. Constable,et al. Subrecursive Programming Languages. II. On Program Size , 1971, J. Comput. Syst. Sci..
[50] J. Girard. Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .
[51] Allan Borodin,et al. Subrecursive Programming Languages, Part I: efficiency and program structure , 1972, JACM.
[52] Stanley S. Wainer,et al. Ordinal recursion, and a refinement of the extended Grzegorczyk hierarchy , 1972, Journal of Symbolic Logic.
[53] Carl G. Jockusch,et al. Ramsey's theorem and recursion theory , 1972, Journal of Symbolic Logic.
[54] Per Martin-Löf,et al. Infinite terms and a system of natural deduction , 1972 .
[55] de Ng Dick Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .
[56] Charles D. Parsons,et al. On n-quantifier induction , 1972, Journal of Symbolic Logic.
[57] Yu. L. Ershov. Everywhere-defined continuous functionals , 1972 .
[58] G. E. Mints. Quantifier-free and one-quantifier systems , 1972 .
[59] A. Troelstra. Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .
[60] Horst Luckhardt,et al. Generalized inductive definitions , 1973 .
[61] Jeffery I. Zucker. Iterated inductive definitions, trees and ordinals , 1973 .
[62] J. Diller. Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen , 1974 .
[63] G. Takeuti. Proof Theory , 1975 .
[64] Helmut Schwichtenberg,et al. Elimination of higher type levels in definitions of primitive recursive functionals , 1975 .
[65] Andreas Weiermann,et al. A CLASSIFICATION OF RAPIDLY GROWING RAMSEY FUNCTIONS , 1976 .
[66] Constructive operators of finite types , 1976 .
[67] Fred Zemke,et al. P.R.-regulated systems of notation and the subrecursive hierarchy equivalence property , 1977 .
[68] G.D. Plotkin,et al. LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..
[69] Kurt Schütte. Proof theory , 1977 .
[70] H. Schwichtenberg. Proof Theory: Some Applications of Cut-Elimination , 1977 .
[71] J. Paris. A Mathematical Incompleteness in Peano Arithmetic , 1977 .
[72] Diana Schmidt,et al. Built-up systems of fundamental sequences and hierarchies of number-theoretic functions , 1977, Arch. Math. Log..
[73] Wilfried Buchholz,et al. Provable wellorderings of formal theories for transfinitely iterated inductive definitions , 1978 .
[74] R. Statman. Bounds for proof-search and speed-up in the predicate calculus , 1978 .
[75] G. Plotkin. Tω as a Universal Domain , 1978 .
[76] Martin Stein. Interpretationen der Heyting-Arithmetik endlicher Typen , 1978, Arch. Math. Log..
[77] Harvey M. Friedman,et al. Classically and intuitionistically provably recursive functions , 1978 .
[78] G. Mints,et al. Finite investigations of transfinite derivations , 1978 .
[79] N. Cutland. Computability: An Introduction to Recursive Function Theory , 1980 .
[80] Jeff B. Paris,et al. A Hierarchy of Cuts in Models of Arithmetic , 1980 .
[81] W. Buchholz. Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-theoretical Studies , 1981 .
[82] Jean-Yves Girard,et al. Π12-logic, Part 1: Dilators , 1981 .
[83] Jussi KETONENt,et al. Rapidly growing Ramsey functions , 1981 .
[84] V. Orevkov. Lower bounds for increasing complexity of derivations after cut elimination , 1982 .
[85] J. Paris,et al. Accessible Independence Results for Peano Arithmetic , 1982 .
[86] D. Scott. Domains for Denotational Semantics , 1982, ICALP.
[87] Solomon Feferman,et al. Iterated Inductive Fixed-Point Theories: Application to Hancock's Conjecture , 1982 .
[88] Mariangiola Dezani-Ciancaglini,et al. A filter lambda model and the completeness of type assignment , 1983, Journal of Symbolic Logic.
[89] H. E. Rose. Subrecursion: Functions and Hierarchies , 1984 .
[90] Peter Schroeder-Heister,et al. A natural extension of natural deduction , 1984, Journal of Symbolic Logic.
[91] Per Martin-Löf,et al. Intuitionistic type theory , 1984, Studies in proof theory.
[92] Cliff B. Jones,et al. An Early Program Proof by Alan Turing , 1984, Annals of the History of Computing.
[93] Daniel Leivant,et al. Syntactic translations and provably recursive functions , 1985, Journal of Symbolic Logic.
[94] Wilfried Sieg,et al. Fragments of arithmetic , 1985, Ann. Pure Appl. Log..
[95] Stephen G. Simpson,et al. Nonprovability of Certain Combinatorial Properties of Finite Trees , 1985 .
[96] Gerhard Max Jäger,et al. Theories for admissible sets : a unifying approach to proof theory , 1986 .
[97] Wilfried Buchholz,et al. An independence result for (II11-CA)+BI , 1987, Ann. Pure Appl. Log..
[98] R. Soare. Recursively enumerable sets and degrees , 1987 .
[99] Matthias Felleisen,et al. A Syntactic Theory of Sequential Control , 1987, Theor. Comput. Sci..
[100] S. Wainer,et al. Provably computable functions and the fast growing hierarchy , 1987 .
[101] Samson Abramsky,et al. Domain Theory in Logical Form , 1991, LICS.
[102] Jan Łukasiewicz,et al. On the principle of the excluded middle , 1987 .
[103] Tatsuya Hagino,et al. A Typed Lambda Calculus with Categorical Type Constructors , 1987, Category Theory and Computer Science.
[104] A. Troelstra,et al. Constructivism in Mathematics: An Introduction , 1988 .
[105] Harold Simmons,et al. The realm of primitive recursion , 1988, Arch. Math. Log..
[106] Harold T. Hodes,et al. The | lambda-Calculus. , 1988 .
[107] J. Girard. Proof Theory and Logical Complexity , 1989 .
[108] Stanley S. Wainer. Slow Growing Versus Fast Growing , 1989, J. Symb. Log..
[109] Timothy G. Griffin,et al. A formulae-as-type notion of control , 1989, POPL '90.
[110] Bruce M. Kapron,et al. Characterizations of the basic feasible functionals of finite type , 1989, 30th Annual Symposium on Foundations of Computer Science.
[111] Chetan R. Murthy. Extracting Constructive Content From Classical Proofs , 1990 .
[112] J. Spencer. Ramsey Theory , 1990 .
[113] C. Smorynski. Logical Number Theory I , 1991 .
[114] Ulrich Berger,et al. An inverse of the evaluation functional for typed lambda -calculus , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.
[115] Glynn Winskel,et al. Using Information Systems to Solve Recursive Domain Equations , 1991, Inf. Comput..
[116] Chetan R. Murthy,et al. Finding computational content in classical proofs , 1991 .
[117] Wilfried Sieg. Herbrand analyses , 1991, Arch. Math. Log..
[118] Toshiyasu Arai. A Slow Growing Analogue to Buchholz' Proof , 1991, Ann. Pure Appl. Log..
[119] Michel Parigot,et al. Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.
[120] Robert Hieb,et al. The Revised Report on the Syntactic Theories of Sequential Control and State , 1992, Theor. Comput. Sci..
[121] S. S. Wainer,et al. Ordinal Complexity of Recursive Definitions , 1992, Inf. Comput..
[122] Solomon Feferman,et al. Logics for Termination and Correctness of Functional Programs , 1993 .
[123] Bezem,et al. Ramsey's theorem and the pigeonhole principle in intuitionistic mathematics , 1993 .
[124] Michael Rathjen. A Proof-Theoretic Characterization of the Primitive Recursive Set Functions , 1992, J. Symb. Log..
[125] Peter Aczel,et al. Proof Theory: Some Applications of Cut-Elimination , 1977 .
[126] J. V. Tucker,et al. Provable computable selection functions of abstract structures , 1993 .
[127] Michael Rathjen,et al. How to Develop Proof-Theoretic Ordinal Functions on the Basis of Admissible Ordinals , 1993, Math. Log. Q..
[128] Noriya Kadota. On Wainer's Notation for a Minimal Subrecursive Inaccessible Ordinal , 1993, Math. Log. Q..
[129] H. Schwichtenberg. Proofs as programs , 1993 .
[130] Yuri Gurevich,et al. The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.
[131] Stefano Berardi,et al. Extracting Constructive Content from Classical Logic via Control-like Reductions , 1993, TLCA.
[132] Zygmunt Ratajczyk,et al. Subsystems of True Arithmetic and Hierarchies of Functions , 1993, Ann. Pure Appl. Log..
[133] Petr Hájek,et al. Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.
[134] Ulrich Berger,et al. Total Sets and Objects in Domain Theory , 1993, Ann. Pure Appl. Log..
[135] Daniel Leivant,et al. Lambda Calculus Characterizations of Poly-Time , 1993, Fundam. Informaticae.
[136] P. Clote,et al. Arithmetic, proof theory, and computational complexity , 1993 .
[137] Michael Rathjen,et al. Proof-Theoretic Investigations on Kruskal's Theorem , 1993, Ann. Pure Appl. Log..
[138] Viggo Stoltenberg-Hansen,et al. Mathematical theory of domains , 1994, Cambridge tracts in theoretical computer science.
[139] Ulrich Berger,et al. Program Extraction from Classical Proofs , 1994, LCC.
[140] Jean-Louis Krivine,et al. Classical Logic, Storage Operators and Second-Order lambda-Calculus , 1994, Ann. Pure Appl. Log..
[141] Andreas Weiermann,et al. A Uniform Approach to Fundamental Sequences and Hierarchies , 1994, Math. Log. Q..
[142] Daniel Leivant. Predicative Recurrence in Finite Types , 1994, LFCS.
[143] Daniel Leivant,et al. Intrinsic Theories and Computational Complexity , 1994, LCC.
[144] Jaco van de Pol. Two Different Strong Normalization Proofs? , 1995, HOA.
[145] Paula Severi,et al. On normalisation , 1995 .
[146] Ulrich Berger,et al. The Greatest Common Divisor: A Case Study for Program Extraction from Classical Proofs , 1995, TYPES.
[147] P. Clote,et al. First Order Bounded Arithmetic and Small Boolean Circuit Complexity Classes , 1995 .
[148] Andreas Weiermann,et al. Investigations on slow versus fast growing: How to majorize slow growing functions nontrivially by fast growing ones , 1995, Arch. Math. Log..
[149] Helmut Schwichtenberg,et al. Ordinal Bounds for Programs , 1995 .
[150] Samson Abramsky,et al. Domain theory , 1995, LICS 1995.
[151] Richard Sommer,et al. Transfinite Induction within Peano Arithmetic , 1995, Ann. Pure Appl. Log..
[152] Samuel R. Buss,et al. The witness function method and provably recursive functions of peano arithmetic , 1995 .
[153] Harvey M. Friedman,et al. Elementary Descent Recursion and Proof Theory , 1995, Ann. Pure Appl. Log..
[154] Masako Takahashi. Parallel Reductions in lambda-Calculus , 1995, Inf. Comput..
[155] D. Leivant. Ramified Recurrence and Computational Complexity I: Word Recurrence and Poly-time , 1995 .
[156] U. Kohlenbach. Analysing proofs in analysis , 1996 .
[157] Solomon Feferman. Computation on Abstract Data Types: The Extensional Approach, with an Application to Streams , 1996, Ann. Pure Appl. Log..
[158] Helmut Schwichtenberg,et al. Basic proof theory , 1996, Cambridge tracts in theoretical computer science.
[159] Arnold Beckmann,et al. A term rewriting characterization of the polytime functions and related complexity classes , 1996, Arch. Math. Log..
[160] Andreas Weiermann,et al. How to characterize provably total functions by local predicativity , 1996, Journal of Symbolic Logic.
[161] S. Wainer,et al. Axioms for subrecursion theories , 1996 .
[162] Helmut SchwichtenbergMathematisches,et al. Density and Choice for Total Continuous Functionals* 1. Information Systems , 1996 .
[163] Thomas Strahm. Polynomial Time Operations in Explicit Mathematics , 1997, J. Symb. Log..
[164] Yiannis N. Moschovakis,et al. The Logic of Functional Recursion , 1997 .
[165] Jeremy Avigad,et al. A Model-Theoretic Approach to Ordinal Analysis , 1997, Bulletin of Symbolic Logic.
[166] Dag Normann,et al. Total objects in inductively defined types , 1997, Arch. Math. Log..
[167] Samuel R. Buss,et al. Chapter II - First-Order Proof Theory of Arithmetic , 1998 .
[168] Roberto M. Amadio,et al. Domains and lambda-calculi , 1998, Cambridge tracts in theoretical computer science.
[169] Stanley S. Wainer,et al. Chapter III - Hierarchies of Provably Recursive Functions , 1998 .
[170] Jean-Yves Girard,et al. Light Linear Logic , 1998, Inf. Comput..
[171] A. Wilkie. THE CLASSICAL DECISION PROBLEM (Perspectives in Mathematical Logic) By Egon Börger, Erich Grädel and Yuri Gurevich: 482 pp., DM.158.–, ISBN 3 540 57073 X (Springer, 1997). , 1998 .
[172] Thierry Coquand,et al. Gröbner Bases in Type Theory , 1998, TYPES.
[173] S. Buss. Handbook of proof theory , 1998 .
[174] W. Pohlers. Chapter IV – Subsystems of Set Theory and Second Order Number Theory , 1998 .
[175] W. G. Handley,et al. Complexity of Primitive Recursion , 1999 .
[176] A Semantic Account of Type-Directed Partial Evaluation , 1999 .
[177] Gerhard Jäger,et al. The Proof-Theoretic Analysis of Transfinitely Iterated Fixed Point Theories , 1999, J. Symb. Log..
[178] Jean-Pierre Jouannaud,et al. The Calculus of algebraic Constructions , 1999, RTA.
[179] Viggo Stoltenberg-Hansen,et al. Computable Rings and Fields , 1999, Handbook of Computability Theory.
[180] Martin Hofmann,et al. Linear types and non-size-increasing polynomial time computation , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).
[181] John K. Truss,et al. What Makes A (Pointwise) Subrecursive Hierarchy Slow Growing , 1999 .
[182] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[183] Stanley S. Wainer. Accessible recursive functions , 1999, Bull. Symb. Log..
[184] Martin Hofmann,et al. A new method for establishing conservativity of classical systems over their intuitionistic version , 1999, Mathematical Structures in Computer Science.
[185] Hajime Ishihara. A Note on the Gödel-Gentzen Translation , 2000, Math. Log. Q..
[186] G. Mints. A Short Introduction to Intuitionistic Logic , 2000 .
[187] Toshiyasu Arai,et al. Ordinal diagrams for recursively Mahlo universes , 2000, Arch. Math. Log..
[188] The unfolding of non-finitist arithmetic , 2000, Ann. Pure Appl. Log..
[189] Jan J. M. M. Rutten,et al. Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..
[190] H. Ishihara. A Note on theGödel-Gentzen Translation , 2000 .
[191] Martin Hofmann. Safe recursion with higher types and BCK-algebra , 2000, Ann. Pure Appl. Log..
[192] Helmut Schwichtenberg,et al. Higher type recursion, ramification and polynomial time , 2000, Ann. Pure Appl. Log..
[193] Dag Normann. Computability over The Partial Continuous Functionals , 2000, J. Symb. Log..
[194] Jeremy Avigad,et al. Interpreting classical theories in constructive ones , 2000, Journal of Symbolic Logic.
[195] Sara Negri,et al. Structural proof theory , 2001 .
[196] Timothy J. Carlson,et al. Elementary patterns of resemblance , 2001, Ann. Pure Appl. Log..
[197] Alexandre Miquel. The Implicit Calculus of Constructions , 2001, TLCA.
[198] J. V. Tucker,et al. Computable functions and semicomputable sets on many-sorted algebras , 2001, Logic in Computer Science.
[199] Jean-Yves Marion. Actual Arithmetic and Feasibility , 2001, CSL.
[200] Isabel Oitavem. Implicit Characterizations of Pspace , 2001, Proof Theory in Computer Science.
[201] Helmut Schwichtenberg,et al. Feasible Computation with Higher Types , 2002 .
[202] P. Daniel Hestand,et al. Mathematical theory of domains , 2002, SIGA.
[203] Andrea Cantini. Polytime, combinatory logic and positive safe induction , 2002, Arch. Math. Log..
[204] Paulo Oliva,et al. Proof Mining: A Systematic Way of Analysing Proofs in Mathematics , 2002 .
[205] Helmut Schwichtenberg,et al. Refined program extraction form classical proofs , 2002, Ann. Pure Appl. Log..
[206] Martin Hofmann,et al. A New "Feasible" Arithmetic , 2002, J. Symb. Log..
[207] Paulo Oliva,et al. Proof mining in L1-approximation , 2003, Ann. Pure Appl. Log..
[208] Thierry Coquand,et al. Inductively generated formal topologies , 2003, Ann. Pure Appl. Log..
[209] Samuel R. Buss,et al. Ordinal notations and well-orderings in bounded arithmetic , 2003, Ann. Pure Appl. Log..
[210] Ulrich Berger,et al. Term rewriting for normalization by evaluation , 2003, Inf. Comput..
[211] Ulrich Kohlenbach,et al. Mann iterates of directionally nonexpansive mappings in hyperbolic spaces , 2002 .
[212] Lev D. Beklemishev,et al. Proof-theoretic analysis by iterated reflection , 2003, Arch. Math. Log..
[213] Ralph Matthes,et al. Short proofs of normalization for the simply- typed λ-calculus, permutative conversions and Gödel's T , 2003, Arch. Math. Log..
[214] Douglas S. Bridges,et al. Constructivity in Mathematics , 2004 .
[215] Thomas Strahm,et al. A proof-theoretic characterization of the basic feasible functionals , 2004, Theor. Comput. Sci..
[216] W. Vasconcelos,et al. On the complexity of the integral closure , 2004 .
[217] Christophe Raffalli. Getting results from programs extracted from classical proofs , 2004, Theor. Comput. Sci..
[218] Ulrich Kohlenbach,et al. Some logical metatheorems with applications in functional analysis , 2003 .
[219] Ulrich Berger,et al. The Warshall Algorithm and Dickson's Lemma: Two Examples of Realistic Program Extraction , 2004, Journal of Automated Reasoning.
[220] Stanley S. Wainer,et al. Inductive definitions over a predicative arithmetic , 2005, Ann. Pure Appl. Log..
[221] Herman Ruge Jervell. Finite Trees as Ordinals , 2005, CiE.
[222] Ulrich Berger,et al. Continuous Semantics for Strong Normalization , 2005, CiE.
[223] Helmut Schwichtenberg. A Direct Proof of the Equivalence between Brouwer's Fan Theorem and König's Lemma with a Uniqueness Hypothesis , 2005, J. Univers. Comput. Sci..
[224] Klaus Aehlig,et al. An elementary fragment of second-order lambda calculus , 2002, TOCL.
[225] Andreas Weiermann. Analytic combinatorics, proof-theoretic ordinals, and phase transitions for independence results , 2005, Ann. Pure Appl. Log..
[226] Paulo Oliva,et al. Unifying Functional Interpretations , 2006, Notre Dame J. Formal Log..
[227] Ulrich Berger,et al. Uniform Heyting arithmetic , 2005, Ann. Pure Appl. Log..
[228] Hajime Ishihara,et al. Brouwer's fan theorem and unique existence in constructive analysis , 2005, Math. Log. Q..
[229] Stephen A. Cook,et al. A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.
[230] Stanley S. Wainer,et al. Elementary arithmetic , 2005, Ann. Pure Appl. Log..
[231] Michael Rathjen. An ordinal analysis of parameter free Π12-comprehension , 2005, Arch. Math. Log..
[232] Ulrich Berger,et al. Program Extraction from Normalization Proofs , 2006, Stud Logica.
[233] Dag Normann,et al. Computing with Functionals—Computability Theory or Computer Science? , 2006, Bulletin of Symbolic Logic.
[234] F. Wiedijk. The Seventeen Provers of the World , 2006 .
[235] Thierry Coquand,et al. A Proof of Strong Normalisation using Domain Theory , 2006, LICS.
[236] Andreas Weiermann,et al. Classifying the Provably Total Functions of PA , 2006, Bulletin of Symbolic Logic.
[237] Helmut Schwichtenberg. An arithmetic for polynomial-time computation , 2006, Theor. Comput. Sci..
[238] Michael Rathjen,et al. The Realm of Ordinal Analysis , 2007 .
[239] U. Kohlenbach,et al. General logical metatheorems for functional analysis , 2005 .
[240] H. Schwichtenberg. Logic Colloquium 2005: Recursion on the partial continuous functionals , 2007 .
[241] Andrey Bovykin,et al. Brief introduction to unprovability , 2007 .
[242] Andreas Weiermann,et al. Phase transition thresholds for some Friedman‐style independence results , 2007, Math. Log. Q..
[243] Helmut Schwichtenberg,et al. Realizability interpretation of proofs in constructive analysis , 2008, Theory of Computing Systems.
[244] Jeffery I. Zucker,et al. Primitive recursive selection functions for existential assertions over abstract algebras , 2008, J. Log. Algebraic Methods Program..
[245] Helmut Schwichtenberg. Dialectica interpretation of well-founded induction , 2008, Math. Log. Q..
[246] Ulrich Kohlenbach,et al. Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.
[247] Jan von Plato,et al. Gentzen's Proof of Normalization for Natural Deduction , 2008, Bull. Symb. Log..
[248] Trifon Trifonov. Dialectica Interpretation with Fine Computational Control , 2009, CiE.
[249] Maribel Fernández. The Lambda Calculus , 2009 .
[250] Helmut Schwichtenberg,et al. Decorating proofs , 2009 .
[251] C. McCarty. CONSTRUCTIVISM IN MATHEMATICS , 2009 .
[252] Ulrich Berger,et al. From Coinductive Proofs to Exact Real Arithmetic , 2009, CSL.
[253] Solomon Feferman,et al. Unfolding Finitist Arithmetic , 2010, Rev. Symb. Log..
[254] Ulrich Berger,et al. Proofs, Programs, Processes , 2010, CiE.
[255] George b. Wentworth. New Elementary Arithmetic , 2010 .
[256] Trifon Trifonov,et al. Light Dialectica revisited , 2010, Ann. Pure Appl. Log..
[257] Stanley S. Wainer. Computing Bounds from Arithmetical Proofs , 2010 .
[258] Kenji Miyamoto,et al. Minlog - A Tool for Program Extraction Supporting Algebras and Coalgebras , 2011, CALCO.
[259] Thierry Coquand,et al. Unique paths as formal points , 2011, J. Log. Anal..
[260] Tristan Crolard,et al. Deriving a Hoare-Floyd logic for non-local jumps from a formulae-as-types notion of control , 2011, ArXiv.
[261] Hans Jürgen Prömel,et al. Rapidly Growing Ramsey Functions , 2013 .