Thomson scattering diagnostics of thermal plasmas: Laser heating of electrons and the existence of local thermodynamic equilibrium.
暂无分享,去创建一个
A number of assessments of electron temperatures in atmospheric-pressure arc plasmas using Thomson scattering of laser light have recently been published. However, in this method, the electron temperature is perturbed due to strong heating of the electrons by the incident laser beam. This heating was taken into account by measuring the electron temperature as a function of the laser pulse energy, and linearly extrapolating the results to zero pulse energy to obtain an unperturbed electron temperature. In the present paper, calculations show that the laser heating process has a highly nonlinear dependence on laser power, and that the usual linear extrapolation leads to an overestimate of the electron temperature, typically by 5000 K. The nonlinearity occurs due to the strong dependence on electron temperature of the absorption of laser energy and of the collisional and radiative cooling of the heated electrons. There are further problems in deriving accurate electron temperatures from laser scattering due to necessary averages that have to be made over the duration of the laser pulse and over the finite volume from which laser light is scattered. These problems are particularly acute in measurements in which the laser beam is defocused in order to minimize laser heating; this can lead to the derivation of electron temperatures that are significantly greater than those existing anywhere in the scattering volume. It was concluded from the earlier Thomson scattering measurements that there were significant deviations from equilibrium between the electron and heavy-particle temperatures at the center of arc plasmas of industrial interest. The present calculations indicate that such deviations are only of the order of 1000 K in 20 000 K, so that the usual approximation that arc plasmas are approximately in local thermodynamic equilibrium still applies.