Transport processes in stimulated and non-stimulated leaves of Mimosa pudica

SummaryMature leaves of Mimosa pudica L. or parts of them were exposed to 14CO2, and translocation was recorded by macroautoradiography. It was observed that considerable amounts of labelled photoassimilates were accumulated in pulvini when the leaf was stimulated. In non-stimulated leaves, no such accumulation of label was observed.Microautoradiographs of pulvinar regions of the non-stimulated leaf showed 14C- label restricted to the phloem. When stimulated, the 14C- label was unloaded from the phloem of the pulvini. Labelled photoassimilates appeared most concentrated in the walls of the collenchymatous cells and beyond in the extensor region of the motor cortex. There, label was accumulated in the apoplastic compartments. Stimulation causes a sudden phloem unloading of sucrose, and its accumulation in the apoplast lowers the water potential which eventually exceeds the osmotic potential of the extensor cells of the motor cortex. By removal of cytoplasmic water the motor cells lose turgidity which results in the closing movement of the leaflets, and — some seconds later — in the bending down of the petiole. In late afternoon night-stimulation triggers sucrose unloading in secondary pulvini. During phases of relaxation, labelled material is taken up by motor cells of the extensor, which concomitantly gain turgor.

[1]  M. Samejima,et al.  Changes in the extracellular ion concentration in the main pulvinus of Mimosa pudica during rapid movement and recovery , 1980 .

[2]  A. Galston,et al.  Phytochrome-controlled Nyctinasty in Albizzia julibrissin , 2022 .

[3]  A. Spurr A low-viscosity epoxy resin embedding medium for electron microscopy. , 1969, Journal of ultrastructure research.

[4]  J. C. Bose,et al.  The Nervous Mechanism of Plants , 1926, Nature.

[5]  W. Eschrich,et al.  Microautoradiographic localization of imported 14C-photosynthate in induced sink leaves of two dicotyledonous C4 plants in relation to phloem unloading , 1985, Planta.

[6]  G. Morrison,et al.  Calcium and Potassium in the Motor Organ of the Sensitive Plant: Localization by Ion Microscopy , 1979, Science.

[7]  S. Ebashi,et al.  Calcium ion and muscle contraction. , 1968, Progress in biophysics and molecular biology.

[8]  T. Sibaoka Excitable Cells in Mimosa , 1962, Science.

[9]  R. Satter A circadian rhythm in oxygen uptake by samanea pulvini. , 1979, Plant physiology.

[10]  W. Pfeffer,et al.  Osmotische Untersuchungen : studien zur zellmechanik , 1921 .

[11]  M. Stitt,et al.  Enzymic determination of metabolites in the subcellular compartments of spinach protoplasts. , 1980, Plant physiology.

[12]  D. B. Fisher,et al.  Measurement of the sieve tube membrane potential. , 1981, Plant physiology.

[13]  W. Thomson,et al.  Effect of lanthanum on ion absorption in corn roots. , 1975, Plant physiology.

[14]  A. Galston,et al.  Leaf Movements: Rosetta Stone of Plant Behavior? , 1973 .

[15]  R L Satter,et al.  Leaf movements and tendril curling , 1979 .

[16]  E. Bünning,et al.  Über den Temperatureinfluss auf die endogene Tagesrhythmik bei Phaseolus , 1957, Planta.

[17]  R. Evert,et al.  Observations on penetration of Barley leaves by the aphidRhopalosiphum maidis (Fitch) , 1973, Protoplasma.

[18]  N. Campbell,et al.  Vacuolar reorganization in the motor cells of Albizzia during leaf movement , 1980, Planta.

[19]  A. Galston,et al.  Potassium-linked Chloride Fluxes during Rhythmic Leaf Movement of Albizzia julibrissin. , 1976, Plant physiology.

[20]  W. Escherich Translokation14C-Markierter Assimilate im Licht und im Dunkeln beiVicia Faba , 1966, Planta.

[21]  W. Gardiner ON THE POWER OF CONTRACTILITY EXHIBITED BY THE PROTOPLASM OF CERTAIN PLANT CELLS , 1888 .

[22]  Hideaki Tanaka,et al.  Change in potassium distribution in a Phaseolus pulvinus during circadian movement of the leaf , 1976 .

[23]  Marvin Weintraub,et al.  LEAF MOVEMENTS IN MIMOSA PUDICA L. , 1952 .

[24]  H. Schildknecht Turgorine, Hormone der endogenen Tagesrhythmik höher organisierter Pflanzen — Nachweis, Isolierung, Strukturaufklärung, Synthese und Wirkung , 2006 .

[25]  E. Fritz Microautoradiographic Localization of Assimilates in Phloem: Problems and New Method , 1980 .

[26]  S. Hendricks,et al.  Leaflet movement of Mimosa pudica L. Indicative of phytochrome action , 1966, Planta.

[27]  A. Galston,et al.  Phytochrome controlled nyctinasty in Albizzia julibrissin. II. Potassium flux as a basis for leaflet movement. , 1970 .

[28]  and R L Satter,et al.  Mechanisms of Control of Leaf Movements , 1981 .

[29]  H. Toriyama Observational and Experimental Studies of Sensitive Plants:VI. The migration of potassium in the primary pulvinus , 1955 .

[30]  R. Satter,et al.  Apoplastic transport of ions in the motor organ of Samanea. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[31]  H. Toriyama,et al.  Migration of Calcium and Its Role in the Regulation of Seismonasty in the Motor Cell of Mimosa pudica L. , 1972, Plant physiology.

[32]  R. D. Allen,et al.  Mechanism of the Seismonastic Reaction in Mimosa pudica. , 1969, Plant physiology.

[33]  K. Esau On the Phloem of Mimosa pudica L. , 1970 .

[34]  M. Jaffe,et al.  Phytochrome-controlled rapid contraction and recovery of contractile vacuoles in the motor cells of Mimosa pudica as an intracellular correlate of nyctinasty , 1972, Planta.

[35]  S. Ebashi,et al.  Calcium Ions and Muscle Contraction , 1972, Nature.

[36]  M. Mccully,et al.  The ruby laser as an instrument for cutting the stylets of feeding aphids , 1972 .

[37]  G. Haberlandt Das reizleitende Gewebesystem der Sinnpflanze : eine anatomisch-physiologische Untersuchung , 1890 .

[38]  A. Galston,et al.  Phytochrome and Circadian Clocks in Samanea: Rhythmic Redistribution of Potassium and Chloride within the Pulvinus during Long Dark Periods. , 1977, Plant physiology.

[39]  W. Pfeffer Der Einfluss von mechanischer Hemmung und von Belastung auf die Schlafbewegungen , 2022 .

[40]  Jörg Fromm,et al.  Transport processes in stimulated and non-stimulated leaves of Mimosa pudica , 1988, Trees.

[41]  G. Roblin,et al.  Distribution of Potassium, Chloride and Calcium and Capacity of Hydrogen Ion Excretion in Various Parts of the Mimosa Pudica Plant , 1983 .

[42]  A. L. Houwink,et al.  The conduction of excitation in Mimosa pudica , 1935 .

[43]  K. Kiyosawa Unequal distribution of potassium and anions within the Phaseolus pulvinus during circadian leaf movement , 1979 .

[44]  J. Fromm,et al.  Changes of adenine nucleotide and orthophosphate concentrations in buds of deciduous trees during spring reactivation , 1986, Trees.

[45]  G. Roblin,et al.  Redistribution of potassium, chloride and calcium during the gravitropically induced movement of Mimosa pudica pulvinus , 1987, Planta.

[46]  A. Galston,et al.  Circadian rhythmicity in excised samanea pulvini: I. Sucrose-white light interactions. , 1976, Plant physiology.

[47]  J. Bonnemain,et al.  Structural and ultrastructural characteristics of the vascular apparatus of the sensitive plant (Mimosa pudica L.) , 1978, Protoplasma.

[48]  A. Galston,et al.  Potassium Flux and Leaf Movement in Samanea saman II . Phytochrome Controlled Movement , 2003 .

[49]  W. Thomson,et al.  Effects of lanthanum and ethylenediaminetetraacetate on leaf movements of mimosa. , 1977, Plant physiology.

[50]  J. Fromm,et al.  Content of adenine nucleotides and orthophosphate in exporting and importing mature maize leaves. , 1985, Plant physiology.

[51]  A. Galston,et al.  Electrical evidence for rhythmic changes in the cotransport of sucrose and hydrogen ions in Samanea pulvini , 2004, Planta.

[52]  H. Schildknecht,et al.  Aminosäuren als „leaf movement factors” , 1978, Naturwissenschaften.