The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates

Extensive knowledge of the dependence of solar cell and module performance on temperature and irradiance is essential for their optimal application in the field. Here we study such dependencies in the most common high-efficiency silicon solar cell architectures, including so-called Aluminum back-surface-field (BSF), passivated emitter and rear cell (PERC), passivated emitter rear totally diffused (PERT), and silicon heterojunction (SHJ) solar cells. We compare measured temperature coefficients (TC) of the different electrical parameters with values collected from commercial module data sheets. While similar TC values of the open-circuit voltage and the short circuit current density are obtained for cells and modules of a given technology, we systematically find that the TC under maximum power-point (MPP) conditions is lower in the modules. We attribute this discrepancy to additional series resistance in the modules from solar cell interconnections. This detrimental effect can be reduced by using a cell design that exhibits a high characteristic load resistance (defined by its voltage-over-current ratio at MPP), such as the SHJ architecture. We calculate the energy yield for moderate and hot climate conditions for each cell architecture, taking into account ohmic cell-to-module losses caused by cell interconnections. Our calculations allow us to conclude that maximizing energy production in hot and sunny environments requires not only a high open-circuit voltage, but also a minimal series-to-load-resistance ratio.

[1]  Loic Tous,et al.  Progress on large area n‐type silicon solar cells with front laser doping and a rear emitter , 2016 .

[2]  A. W. Blakers,et al.  Silicon solar cells with reduced temperature sensitivity , 1982 .

[3]  Martin A. Green,et al.  Reduced temperature coefficients for recent high‐performance silicon solar cells , 1994 .

[4]  Christophe Ballif,et al.  Amorphous/Crystalline Silicon Interface Passivation: Ambient-Temperature Dependence and Implications for Solar Cell Performance , 2015, IEEE Journal of Photovoltaics.

[5]  Jan Schmidt,et al.  Industrial Silicon Solar Cells Applying the Passivated Emitter and Rear Cell (PERC) Concept—A Review , 2016, IEEE Journal of Photovoltaics.

[6]  Ronald A. Sinton,et al.  Generalized analysis of quasi-steady-state and transient decay open circuit voltage measurements , 2002 .

[7]  Martin A. Green,et al.  Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients , 2008 .

[8]  C. Ballif,et al.  >21% Efficient Silicon Heterojunction Solar Cells on n- and p-Type Wafers Compared , 2013, IEEE Journal of Photovoltaics.

[9]  Martin A. Green,et al.  Accuracy of analytical expressions for solar cell fill factors , 1982 .

[10]  Loic Tous,et al.  Process simplifications in large area hybrid silicon heterojunction solar cells , 2015 .

[11]  A. Cuevas The Recombination Parameter J0 , 2014 .

[12]  Loic Tous,et al.  Large area p-type PERL cells featuring local p+ BSF formed by laser processing of ALD Al2O3 layers , 2015 .

[13]  B. Rech,et al.  Electrical transport mechanisms in a-Si:H/c-Si heterojunction solar cells , 2010 .

[14]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[15]  Martin A. Green,et al.  Commercial progress and challenges for photovoltaics , 2016, Nature Energy.

[16]  Tonio Buonassisi,et al.  Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs , 2012 .

[17]  Nathan S Lewis,et al.  Research opportunities to advance solar energy utilization , 2016, Science.

[18]  Jianhua Zhao,et al.  Rear emitter n-type passivated emitter, rear totally diffused silicon solar cell Structure , 2006 .

[19]  Christophe Ballif,et al.  Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance , 2016 .

[20]  Giso Hahn,et al.  High Efficiency Multi-busbar Solar Cells and Modules , 2014, IEEE Journal of Photovoltaics.

[21]  Sándor Szabó,et al.  Identification of advantageous electricity generation options in sub-Saharan Africa integrating existing resources , 2016, Nature Energy.

[22]  Christian Ebert,et al.  Multi-wire interconnection of busbar-free solar cells , 2014 .

[23]  Robert Mertens,et al.  Evaluation of advanced p‐PERL and n‐PERT large area silicon solar cells with 20.5% energy conversion efficiencies , 2015 .

[24]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[25]  Fengqi You,et al.  Assumptions and the levelized cost of energy for photovoltaics , 2011 .

[26]  Jan Schmidt,et al.  Temperature- and injection-dependent lifetime spectroscopy for the characterization of defect centers in semiconductors , 2003 .

[27]  Makoto Tanaka,et al.  Temperature Dependence of Amorphous/Crystalline Silicon Heterojunction Solar Cells , 2008 .

[28]  F. Smole,et al.  Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells , 2014 .

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  Gregory Wilson,et al.  Economically sustainable scaling of photovoltaics to meet climate targets , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[31]  Andres Cuevas,et al.  Simple data acquisition of the current-voltage curves of solar cells , 2006 .

[32]  Martin A. Green,et al.  General temperature dependence of solar cell performance and implications for device modelling , 2003 .

[33]  Ronald A. Sinton,et al.  Overview and Latest Developments in Photoconductance Lifetime Measurements in Silicon , 2013 .

[34]  J. F. Lerat,et al.  Large-area Hybrid Silicon Heterojunction Solar Cells with Ni/Cu Plated Front Contacts , 2014 .

[35]  Thorsten Dullweber,et al.  19.4% -Efficient Large Area Rear-Passivated Screen-Printed Silicon Solar Cells , 2011 .

[36]  Richard Corkish,et al.  Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon , 2003 .

[37]  Sisi Wang,et al.  Temperature dependence of Auger recombination in highly injected crystalline silicon , 2012 .

[38]  Atse Louwen,et al.  Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development , 2016, Nature Communications.

[39]  C. Battaglia,et al.  High-efficiency crystalline silicon solar cells: status and perspectives , 2016 .

[40]  Benjamin Figgis,et al.  Performance of Silicon Heterojunction Photovoltaic modules in Qatar climatic conditions , 2016 .

[41]  C. Ballif,et al.  High-efficiency Silicon Heterojunction Solar Cells: A Review , 2012 .

[42]  Konstantinos Misiakos,et al.  Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K , 1993 .

[43]  A. W. Blakers,et al.  Characterization of high‐efficiency silicon solar cells , 1985 .

[44]  Robert L. Jaffe,et al.  Pathways for solar photovoltaics , 2015 .

[45]  David Hinken,et al.  Optimized Interconnection of Passivated Emitter and Rear Cells by Experimentally Verified Modeling , 2016, IEEE Journal of Photovoltaics.

[46]  N. Wyrsch,et al.  Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics , 2016, IEEE Journal of Photovoltaics.

[47]  Stefan Braun,et al.  The multi-busbar design: an overview , 2013 .