Preparation and characterization of light weight aluminum matrix syntactic foams with high energy absorbing capacity

[1]  I. Orbulov,et al.  Production and Functional Properties of Graded Al-Based Syntactic Metal Foams , 2022, Metals.

[2]  S. Vincent,et al.  Effect of single and hybrid hollow sphere reinforcement on the deformation mechanism of aluminum matrix syntactic foam at a low strain rate , 2022, Journal of Alloys and Compounds.

[3]  Yang Wang,et al.  High damage-tolerance bio-inspired B4C/2024Al composites with adjustable mechanical performance by tuning ceramic thickness , 2021, Materials Science and Engineering: A.

[4]  C. Lim,et al.  Redox-reaction phenomenon in cenosphere reinforced aluminum alloy matrix syntactic foam , 2021 .

[5]  M. Saadatfar,et al.  Strain-rate dependency and impact dynamics of closed-cell aluminium foams , 2021 .

[6]  M. Silnikov,et al.  Behavior of multilayer transparent spacecraft elements during high-speed collision with compact impactors , 2020 .

[7]  Han Wang,et al.  Compressive properties of expanded glass and alumina hollow spheres hybrid reinforced aluminum matrix syntactic foams , 2020 .

[8]  Zhongfang Li,et al.  Simulation and application of Bi-directional corrugated honeycomb aluminum as filling material for impact limiter of nuclear spent fuel transport cask , 2020 .

[9]  Juan Wang,et al.  Microstructural characterization and compression mechanical response of glass hollow spheres/Al syntactic foams with different Mg additions , 2019, Materials Science and Engineering: A.

[10]  V. Atgur,et al.  Experimental investigation on thermal behavior of fly ash reinforced aluminium alloy (Al6061) hybrid composite , 2019, Journal of Mechanical Engineering and Sciences.

[11]  Han Wang,et al.  Compressive Properties of Aluminum Matrix Syntactic Foams Prepared by Stir Casting Method , 2019, Advanced Engineering Materials.

[12]  M. Saadatfar,et al.  Mechanical response and dynamic deformation mechanisms of closed-cell aluminium alloy foams under dynamic loading , 2018 .

[13]  M. D. Goel,et al.  Comparative Study on Microstructural Characteristics and Compression Deformation Behaviour of Alumina and Cenosphere Reinforced Aluminum Syntactic Foam Made Through Stir Casting Technique , 2018, Transactions of the Indian Institute of Metals.

[14]  Yongle Sun,et al.  Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling , 2018 .

[15]  Qiang Zhang,et al.  Microstructure and strength correlation of pure Al and Al-Mg syntactic foam composites subject to uniaxial compression , 2017 .

[16]  M. Taherishargh,et al.  On the compressive behaviour of high porosity expanded Perlite-Metal Syntactic Foam (P-MSF) , 2017 .

[17]  Yun Huang,et al.  Integrating planar waveguides doped with light scattering nanoparticles into a flat-plate photobioreactor to improve light distribution and microalgae growth. , 2016, Bioresource technology.

[18]  Boyi Zhang,et al.  Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams , 2016 .

[19]  M. Gupta,et al.  Powder metallurgy hollow fly ash cenospheres’ particles reinforced magnesium composites , 2016 .

[20]  Qiang Zhang,et al.  Interfacial microstructure and compressive properties of Al–Mg syntactic foam reinforced with glass cenospheres , 2016 .

[21]  C. Vogiatzis,et al.  Aluminum–ceramic cenospheres syntactic foams produced by powder metallurgy route , 2015 .

[22]  A. Rabiei,et al.  Ballistic performance of composite metal foams , 2015 .

[23]  A. Rabiei,et al.  Effect of Sphere Properties on Microstructure and Mechanical Performance of Cast Composite Metal Foams , 2015 .

[24]  M. Taherishargh,et al.  On the particle size effect in expanded perlite aluminium syntactic foam , 2015 .

[25]  Jalal Kahani Khabushan,et al.  Fabrication of metallic composite foam using ceramic porous spheres “Light Expanded Clay Aggregate” via casting process , 2014 .

[26]  M. Taherishargh,et al.  On the mechanical properties of heat-treated expanded perlite–aluminium syntactic foam , 2014 .

[27]  M. Taherishargh,et al.  Low-density expanded perlite–aluminium syntactic foam , 2014 .

[28]  Shichao Liu,et al.  Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties , 2014 .

[29]  P. Rohatgi,et al.  Al–Al2O3 syntactic foams – Part I: Effect of matrix strength and hollow sphere size on the quasi-static properties of Al-A206/Al2O3 syntactic foams , 2013 .

[30]  Weimin Zhao,et al.  The compressive properties of closed-cell aluminum foams with different Mn additions , 2013 .

[31]  B. Pang,et al.  Dynamic compressive behavior of aluminum matrix syntactic foam and its multilayer structure , 2013 .

[32]  M. D. Goel,et al.  Dynamic compression behavior of cenosphere aluminum alloy syntactic foam , 2012 .

[33]  Weixing Chen,et al.  Evaluation of Cu-Cr3C2 composite with interpenetrating network , 2012 .

[34]  R. Edwin Raj,et al.  Comparison of quasi-static and dynamic compression behavior of closed-cell aluminum foam , 2009 .

[35]  Peter D. Lee,et al.  Micro-CT characterization of structural features and deformation behavior of fly ash/aluminum syntactic foam , 2009 .

[36]  S. Das,et al.  Cenosphere filled aluminum syntactic foam made through stir-casting technique , 2009 .

[37]  A. Rabiei,et al.  A comparison of composite metal foam's properties and other comparable metal foams , 2009 .

[38]  Zhang-fu Yuan,et al.  Surface tension of molten Al-Si alloy at temperatures ranging from 923 to 1123 K , 2008 .

[39]  P. Greil,et al.  Microstructure and properties of LZSA glass-ceramic foams , 2008 .

[40]  A. Rabiei,et al.  A study on aluminum–steel composite metal foam processed by casting , 2007 .

[41]  Y. Takiguchi,et al.  Strain rate sensitivity and energy absorption of Zn–22Al foams , 2006 .

[42]  G. Gray,et al.  Plasticity and Damage in Aluminum Syntactic Foams Deformed under Dynamic and Quasi-Static Conditions , 2005 .

[43]  G. Ravichandran,et al.  Dynamic response and energy dissipation characteristics of balsa wood: experiment and analysis , 2003 .

[44]  James Lankford,et al.  High strain rate compression of closed-cell aluminium foams , 2000 .

[45]  G. Han,et al.  Ceramic/aluminum co-continuous composite synthesized by reaction accelerated melt infiltration , 1997 .

[46]  N. Gupta,et al.  Effect of hollow sphere size and size distribution on the quasi-static and high strain rate compressive properties of Al-A380–Al2O3 syntactic foams , 2013, Journal of Materials Science.