Aeroacoustic and aerodynamic optimization of a MW class HAWT using MOPSO algorithm

Abstract In this paper, results of WindPACT 1.5 MW baseline horizontal axes wind turbine aeroacoustic and aerodynamic optimization are presented. For this purpose, the blade twist, the chord distribution, the airfoils for all sections, and the rotational speed are optimized with Multi-Objective Particle Swarm Optimization (MOPSO) algorithm. The geometric class/shape function transformation technique and Bezier curve are used for geometry parameterization. Improved blade element momentum theory and Brooks, Pope and Marcolini semi-empirical methods are implemented for wind turbine power and aeroacoustic noise calculation in the optimization procedure. MOPSO parametric study is conducted to increase both robustness and speed of the optimization cycle. Optimization objective functions are power output and overall average sound pressure level. After optimization, improved delayed detached eddy simulation is employed to verify the new wind turbine output power and noise sources. The noise propagation to the far field is calculated with the Ffowcs Williams and Hawkings acoustic analogy. Results show about 1 dB noise reduction as well as 6% power increment for the optimized WindPACT wind turbine.

[1]  D. L. Hawkings,et al.  Sound generation by turbulence and surfaces in arbitrary motion , 1969, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  James F. Manwell,et al.  Wind Energy Applications , 2010 .

[3]  Jorge C. S. André,et al.  Wind tunnel testing of a horizontal axis wind turbine rotor and comparison with simulations from two Blade Element Momentum codes , 2013 .

[4]  Andrew Lewis,et al.  A comparison of multi-objective optimisation metaheuristics on the 2D airfoil design problem , 2013 .

[5]  O. Weck,et al.  A COMPARISON OF PARTICLE SWARM OPTIMIZATION AND THE GENETIC ALGORITHM , 2005 .

[6]  J. L. Tangler,et al.  NREL airfoil families for HAWTs , 1995 .

[7]  D. J. Malcolm,et al.  WindPACT Turbine Rotor Design Study , 2006 .

[8]  Tuhfe Göçmen,et al.  Airfoil optimization for noise emission problem and aerodynamic performance criterion on small scale wind turbines , 2012 .

[9]  H. F. Link,et al.  International Energy Agency Wind Turbine Round-Robin Test Task , 2004 .

[10]  M. Zangeneh,et al.  Numerical prediction of wind turbine noise , 2011 .

[11]  J. Mur-Amada,et al.  Variability of Wind and Wind Power , 2010 .

[12]  M. Drela XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils , 1989 .

[13]  David Wood,et al.  A three-dimensional analysis of stall-delay on a horizontal-axis wind turbine , 1991 .

[14]  T. Pulliam,et al.  A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization , 2008 .

[15]  J. Tamura Calculation Method of Losses and Efficiency of Wind Generators , 2012 .

[16]  Li Yan,et al.  Parameterization and optimization of hypersonic-gliding vehicle configurations during conceptual design , 2016 .

[17]  Pieter Sijtsma,et al.  Nationaal Lucht-en Ruimtevaartlaboratorium National Aerospace Laboratory NLR NLR-TP-2007-798 Location and quantification of noise sources on a wind turbine , 2008 .

[18]  R. H. Schlinker,et al.  Progress in rotor broadband noise research , 1983 .

[19]  Amir Nejat,et al.  Aerodynamic noise prediction of a MW-class HAWT using shear wind profile , 2017 .

[20]  Marin D. Guenov,et al.  A Comparison of Airfoil Shape Parameterization Techniques for Early Design Optimization , 2010 .

[21]  Gianfranco Guidati,et al.  Wind Turbine Noise , 1996 .

[22]  Moradtabrizi Hamid,et al.  AERODYNAMIC DESIGN AND OPTIMIZATION OF A MEGAWATT WIND TURBINE BLADE BASED ON BLADE ELEMENT MOMENTUM THEORY , 2016 .

[23]  Geoffrey Ingram Taylor,et al.  Diffusion by Continuous Movements , 1922 .

[24]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[25]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[26]  P. Spalart,et al.  A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities , 2008 .

[27]  Thierry Maeder,et al.  SIROCCO: Silent rotors by acoustic optimisation , 2007 .

[28]  Aya Diab,et al.  Aerodynamic Optimization of a Wind Turbine Blade Designed for Egypt's Saharan Environment Using a Genetic Algorithm , 2015 .

[29]  Masoud Ghasemian,et al.  Aero-acoustics prediction of a vertical axis wind turbine using Large Eddy Simulation and acoustic analogy , 2015 .

[30]  Amir Nejat,et al.  Airfoil shape optimization using improved Multiobjective Territorial Particle Swarm algorithm with the objective of improving stall characteristics , 2014 .

[31]  P. Moin,et al.  Eddies, streams, and convergence zones in turbulent flows , 1988 .

[32]  Thomas F. Brooks,et al.  Airfoil self-noise and prediction , 1989 .

[33]  Masoud Ghasemian,et al.  Aerodynamic noise prediction of a Horizontal Axis Wind Turbine using Improved Delayed Detached Eddy Simulation and acoustic analogy , 2015 .

[34]  Derek B. Ingham,et al.  Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine , 2013 .

[35]  S. Obayashi,et al.  Aerodynamic optimization with evolutionary algorithms , 1996 .

[36]  Daniil Perfiliev,et al.  Methodology for wind turbine blade geometry optimization , 2013 .

[37]  Amir Nejat,et al.  Aerodynamic optimization of a 5 Megawatt wind turbine blade , 2016 .