Synthesis of a 2‐arylsulphonylated tryptophan: the antibacterial activity of bovine lactoferricin peptides containing Trp(2‐Pmc)

A modified tryptophan, β‐[2‐(2,2,5,7,8‐pentamethylchroman‐6‐sulphonyl)‐indol‐3‐yl]alanine, Trp(2 − Pmc) = Tpc has been synthesized. Replacement of tryptophan in a bovine lactoferricin model peptide with the modified tryptophan resulted in peptides with a substantially increased antibacterial activity against Escherichia coli and Staphylococcus aureus. The most active peptides against each bacterial strain displayed minimal inhibitory concentrations of 7.5 μg/ml. Copyright © 2002 European Peptide Society and John Wiley & Sons, Ltd.

[1]  J. Svendsen,et al.  Important structural features of 15-residue lactoferricin derivatives and methods for improvement of antimicrobial activity. , 2002, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[2]  J. Svendsen,et al.  Bulky aromatic amino acids increase the antibacterial activity of 15‐residue bovine lactoferricin derivatives , 2001, Journal of peptide science : an official publication of the European Peptide Society.

[3]  J. Svendsen,et al.  The role of tryptophan in the antibacterial activity of a 15‐residue bovine lactoferricin peptide , 2001, Journal of peptide science : an official publication of the European Peptide Society.

[4]  J. Svendsen,et al.  Antibacterial activity of 15-residue lactoferricin derivatives. , 2000, The journal of peptide research : official journal of the American Peptide Society.

[5]  H. Vogel,et al.  The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles , 1999, FEBS letters.

[6]  Ø. Rekdal,et al.  Construction and synthesis of lactoferricin derivatives with enhanced antibacterial activity , 1999 .

[7]  A. Gilbert,et al.  Stereochemistry of 3-Alkylindole Dimerization: Acyclic δ1,δ1‘-Tryptophan Dimers , 1997 .

[8]  C. Deber,et al.  Folding proteins into membranes , 1996, Nature Structural Biology.

[9]  N. Sepetov,et al.  Sequence-dependent modification of Trp by the Pmc protecting group of Arg during TFA deprotection. , 2009, International journal of peptide and protein research.

[10]  M. Tomita,et al.  A review: The active peptide of lactoferrin , 1994, Acta paediatrica Japonica : Overseas edition.

[11]  G. Fields,et al.  Minimization of tryptophan alkylation following 9-fluorenylmethoxycarbonyl solid-phase peptide synthesis , 1993 .

[12]  C. Chang,et al.  The functions of tryptophan residues in membrane proteins. , 1992, Protein engineering.

[13]  A. J. Blake,et al.  An acid labile arginine derivative for peptide synthesis: NG-2,2,5,7,8-pentamethylchroman-6-sulphonyl-L-arginine , 1991 .

[14]  B. Rzeszotarska,et al.  ARGININE, HISTIDINE AND TRYPTOPHAN IN PEPTIDE SYNTHESIS. THE INDOLE FUNCTION OF TRYPTOPHAN , 1990 .

[15]  S. Mccurdy,et al.  49 – Fmoc Chemistry: Synthesis, Kinetics, Cleavage, and Deprotection of Arginine-Containing Peptides , 1989 .

[16]  P. Sieber Modification of tryptophan residues during acidolysis of 4-methoxy-2,3,6-trimethylbenzenesulfonyl groups. Effects of scavengers , 1987 .

[17]  S. Halazy,et al.  Studies on the antitumor agent CC-1065 : Regiospecific introduction of the oxygen functionality for the synthesis of the B/C component of CC-1065. , 1985 .

[18]  Y. Shimonishi,et al.  Dimerization of Tryptophan Derivatives in Trifluoroacetic Acid , 1981 .

[19]  T. Curphey Correction. Trifluoroacetylation of Amino Acids and Peptides by Ethyl Trifluoroacetate , 1979 .

[20]  Y. Shimonishi,et al.  Dimerization of the tryptophyl moiety. , 1976 .

[21]  A. Fontana,et al.  Sulfenyl halides as modifying reagents for polypeptides and proteins. I. Modification of tryptophan residues. , 1968, Biochemistry.

[22]  A. Fontana,et al.  New removal conditions of sulfenyl groups in peptide synthesis , 1966 .