Charge separation in bipolar transistors

The effects of the midgap-level interface trap density and net oxide charge on the total-dose gain degradation of a bipolar transistor are separately identified. The superlinear dose dependence of the excess base current is explained.

[1]  Jean-Jacques Hajjar,et al.  XFCB: a high speed complementary bipolar process on bonded SOI , 1992, Proceedings of the 1992 Bipolar/BiCMOS Circuits and Technology Meeting.

[2]  Daniel M. Fleetwood,et al.  Theory and application of dual-transistor charge separation analysis , 1989 .

[3]  G. Groeseneken,et al.  A reliable approach to charge-pumping measurements in MOS transistors , 1984, IEEE Transactions on Electron Devices.

[4]  Arthur R. Hart,et al.  Hardness Assurance Considerations for Long-Term Ionizing Radiation Effects on Bipolar Structures , 1978, IEEE Transactions on Nuclear Science.

[5]  R. Pease,et al.  Total Dose Effects in Recessed Oxide Digital Bipolar Microcircuits , 1983, IEEE Transactions on Nuclear Science.

[6]  V. Reddi Influence of surface conditions on silicon planar transistor current gain , 1967 .

[7]  K. F. Galloway,et al.  A Simple Model for Separating Interface and Oxide Charge Effects in MOS Device Characteristics , 1984, IEEE Transactions on Nuclear Science.

[8]  P. Winokur,et al.  Simple technique for separating the effects of interface traps and trapped‐oxide charge in metal‐oxide‐semiconductor transistors , 1986 .

[9]  R. L. Pease,et al.  Long term ionization response of several BiCMOS VLSIC technologies , 1991 .

[10]  E. W. Enlow,et al.  Response of advanced bipolar processes to ionizing radiation , 1991 .

[11]  Mechanisms of ionizing-radiation-induced degradation in modern bipolar devices , 1991, Proceedings of the 1991 Bipolar Circuits and Technology Meeting.

[12]  R. L. Pease,et al.  Trends in the total-dose response of modern bipolar transistors , 1992 .

[13]  A. S. Grove Physics and Technology of Semiconductor Devices , 1967 .