Visual Projection Neurons Mediating Directed Courtship in Drosophila

[1]  Barry J. Dickson,et al.  The VT GAL4, LexA, and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system , 2017, bioRxiv.

[2]  C. R. Reyn,et al.  Feature Integration Drives Probabilistic Behavior in the Drosophila Escape Response , 2017, Neuron.

[3]  Michael S. Drews,et al.  The Temporal Tuning of the Drosophila Motion Detectors Is Determined by the Dynamics of Their Input Elements , 2017, Current Biology.

[4]  Mehmet F. Keleş,et al.  Object-Detecting Neurons in Drosophila , 2017, Current Biology.

[5]  Cheng Lyu,et al.  Quantitative Predictions Orchestrate Visual Signaling in Drosophila , 2017, Cell.

[6]  Michael B. Reiser,et al.  Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs , 2016, eLife.

[7]  James P. Bohnslav,et al.  A faithful internal representation of walking movements in the Drosophila visual system , 2016, Nature Neuroscience.

[8]  Jan Clemens,et al.  Sensorimotor Transformations Underlying Variability in Song Intensity during Drosophila Courtship , 2016, Neuron.

[9]  A. Borst,et al.  Neural Mechanisms for Drosophila Contrast Vision , 2015, Neuron.

[10]  Matthias Bethge,et al.  The functional diversity of retinal ganglion cells in the mouse , 2015, Nature.

[11]  Onkar S. Dhande,et al.  Contributions of Retinal Ganglion Cells to Subcortical Visual Processing and Behaviors. , 2015, Annual review of vision science.

[12]  Kristin Scott,et al.  Excitation and inhibition onto central courtship neurons biases Drosophila mate choice , 2015, eLife.

[13]  V. Ruta,et al.  Multimodal Chemosensory Circuits Controlling Male Courtship in Drosophila , 2015, Neuron.

[14]  Patrick M. Lu,et al.  Neurons Forming Optic Glomeruli Compute Figure–Ground Discriminations in Drosophila , 2015, The Journal of Neuroscience.

[15]  Aljoscha Nern,et al.  Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system , 2015, Proceedings of the National Academy of Sciences.

[16]  Markus Knaden,et al.  Pheromones mediating copulation and attraction in Drosophila , 2015, Proceedings of the National Academy of Sciences.

[17]  Daisuke Yamamoto,et al.  Visually induced initiation of Drosophila innate courtship-like following pursuit is mediated by central excitatory state , 2015, Nature Communications.

[18]  A. Borst Fly visual course control: behaviour, algorithms and circuits , 2014, Nature Reviews Neuroscience.

[19]  Michael Dickinson,et al.  The relative roles of vision and chemosensation in mate recognition of Drosophila melanogaster , 2014, Journal of Experimental Biology.

[20]  B. Dickson,et al.  FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila , 2014, Nature Methods.

[21]  M. Orger,et al.  Whole-Brain Activity Maps Reveal Stereotyped, Distributed Networks for Visuomotor Behavior , 2014, Neuron.

[22]  Alexander Borst,et al.  Optogenetic and Pharmacologic Dissection of Feedforward Inhibition in Drosophila Motion Vision , 2014, The Journal of Neuroscience.

[23]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[24]  David J. Anderson,et al.  Optogenetic control of freely behaving adult Drosophila using a red-shifted channelrhodopsin , 2013, Nature Methods.

[25]  Gregory S.X.E. Jefferis,et al.  A Bidirectional Circuit Switch Reroutes Pheromone Signals in Male and Female Brains , 2013, Cell.

[26]  Alexander Borst,et al.  Optogenetic Control of Fly Optomotor Responses , 2013, The Journal of Neuroscience.

[27]  G. Rubin,et al.  A directional tuning map of Drosophila elementary motion detectors , 2013, Nature.

[28]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[29]  Alexander Borst,et al.  Object tracking in motion-blind flies , 2013, Nature Neuroscience.

[30]  B. Dickson,et al.  The Drosophila female aphrodisiac pheromone activates ppk23(+) sensory neurons to elicit male courtship behavior. , 2012, Cell reports.

[31]  B. S. Baker,et al.  Joint control of Drosophila male courtship behavior by motion cues and activation of male-specific P1 neurons , 2012, Proceedings of the National Academy of Sciences.

[32]  Kristin Scott,et al.  Contact Chemoreceptors Mediate Male-Male Repulsion and Male-Female Attraction during Drosophila Courtship , 2012, Cell.

[33]  A. Borst,et al.  Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila , 2012, Journal of Comparative Physiology A.

[34]  M. Welsh,et al.  ppk23-Dependent Chemosensory Functions Contribute to Courtship Behavior in Drosophila melanogaster , 2012, PLoS genetics.

[35]  Soh Kohatsu,et al.  Female Contact Activates Male-Specific Interneurons that Trigger Stereotypic Courtship Behavior in Drosophila , 2011, Neuron.

[36]  Salil S. Bidaye,et al.  Neuronal Control of Drosophila Courtship Song , 2011, Neuron.

[37]  Ethan K. Scott,et al.  Filtering of Visual Information in the Tectum by an Identified Neural Circuit , 2010, Science.

[38]  G. Rubin,et al.  Refinement of Tools for Targeted Gene Expression in Drosophila , 2010, Genetics.

[39]  Jai Y. Yu,et al.  Cellular Organization of the Neural Circuit that Drives Drosophila Courtship Behavior , 2010, Current Biology.

[40]  Michael B. Reiser,et al.  Two-photon calcium imaging from motion-sensitive neurons in head-fixed Drosophila during optomotor walking behavior , 2010, Nature Methods.

[41]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[42]  Devanand S. Manoli,et al.  Midline crossing by gustatory receptor neuron axons is regulated by fruitless, doublesex and the Roundabout receptors , 2010, Development.

[43]  J. Levine,et al.  Specialized cells tag sexual and species identity in Drosophila melanogaster , 2009, Nature.

[44]  Pietro Perona,et al.  Automated monitoring and analysis of social behavior in Drosophila , 2009, Nature Methods.

[45]  M. Noll,et al.  Sensory Integration Regulating Male Courtship Behavior in Drosophila , 2009, PloS one.

[46]  M. Koganezawa,et al.  Fruitless and Doublesex Coordinate to Generate Male-Specific Neurons that Can Initiate Courtship , 2008, Neuron.

[47]  Paul D. Barnett,et al.  Sexual Dimorphism in the Hoverfly Motion Vision Pathway , 2008, Current Biology.

[48]  Barry J. Dickson,et al.  The Drosophila pheromone cVA activates a sexually dimorphic neural circuit , 2008, Nature.

[49]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[50]  B. Dickson,et al.  A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone , 2007, Nature.

[51]  M. Egelhaaf,et al.  Characterisation of a blowfly male-specific neuron using behaviourally generated visual stimuli , 2007, Journal of Comparative Physiology A.

[52]  Haojiang Luan,et al.  Refined Spatial Manipulation of Neuronal Function by Combinatorial Restriction of Transgene Expression , 2006, Neuron.

[53]  Stephen F. Goodwin,et al.  Control of Male Sexual Behavior in Drosophila by the Sex Determination Pathway , 2006, Current Biology.

[54]  Kei Ito,et al.  Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula‐specific pathways , 2006, The Journal of comparative neurology.

[55]  Edward N. Pugh,et al.  Physiological Features of the S- and M-cone Photoreceptors of Wild-type Mice from Single-cell Recordings , 2006, The Journal of general physiology.

[56]  Paul D. Barnett,et al.  Insect Detection of Small Targets Moving in Visual Clutter , 2006, PLoS biology.

[57]  Herwig Baier,et al.  Visual Prey Capture in Larval Zebrafish Is Controlled by Identified Reticulospinal Neurons Downstream of the Tectum , 2005, The Journal of Neuroscience.

[58]  Barry J. Dickson,et al.  fruitless Splicing Specifies Male Courtship Behavior in Drosophila , 2005, Cell.

[59]  Karel Svoboda,et al.  ScanImage: Flexible software for operating laser scanning microscopes , 2003, Biomedical engineering online.

[60]  S. Carroll,et al.  Genetic control and evolution of sexually dimorphic characters in Drosophila , 2000, Nature.

[61]  D. O'Malley,et al.  Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. , 2000, The Journal of experimental biology.

[62]  R. Olberg,et al.  Prey pursuit and interception in dragonflies , 2000, Journal of Comparative Physiology A.

[63]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[64]  K. Isono,et al.  Light-affected male following behavior is involved in light-dependent mating in Drosophila melanogaster , 1997 .

[65]  R. Greenspan,et al.  Genetic feminization of pheromones and its behavioral consequences in Drosophila males. , 1997, Science.

[66]  JF Ferveur,et al.  Genetic feminization of brain structures and changed sexual orientation in male Drosophila , 1995, Science.

[67]  K. Broadie,et al.  Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects , 1995, Neuron.

[68]  J. C. Hall The mating of a fly. , 1994, Science.

[69]  N. Strausfeld,et al.  The functional organization of male-specific visual neurons in flies , 1991, Journal of Comparative Physiology A.

[70]  J. Gustafsson,et al.  Regulation of sexual differentiation in drug and steroid metabolism. , 1989, Trends in pharmacological sciences.

[71]  T. Markow,et al.  Behavioral and sensory basis of courtship success in Drosophila melanogaster. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[72]  M. Mckeown,et al.  Regulation of sexual differentiation in D. melanogaster via alternative splicing of RNA from the transformer gene , 1987, Cell.

[73]  W. Pak,et al.  Drosophila locus with gene-dosage effects on rhodopsin. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[74]  H. Bülthoff Drosophila mutants disturbed in visual orientation , 1982, Biological Cybernetics.

[75]  Heinrich Bülthoff,et al.  Drosophila mutants disturbed in visual orientation , 1982, Biological Cybernetics.

[76]  T. Markow,et al.  Mating success of photoreceptor mutants of Drosophila melanogaster. , 1980, Behavioral and neural biology.

[77]  R. Cook The extent of visual control in the courtship tracking of D. melanogaster , 1980, Biological Cybernetics.

[78]  R. Cook The courtship tracking of Drosophila melanogaster , 1979, Biological Cybernetics.

[79]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part I. A quantitative analysis , 1976, Quarterly Reviews of Biophysics.

[80]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[81]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[82]  Thomas Collett,et al.  Visual neurones in the anterior optic tract of the privet hawk moth , 1972, Journal of comparative physiology.

[83]  S. Hanson,et al.  Multivariate analysis of Drosophila courtship. , 1981, Proceedings of the National Academy of Sciences of the United States of America.