Block SOR for Kronecker structured representations

The Kronecker structure of a hierarchical Markovian model (HMM) induces nested block partitionings in the transition matrix of its underlying Markov chain. This paper shows how sparse real Schur factors of certain diagonal blocks of a given partitioning induced by the Kronecker structure can be constructed from smaller component matrices and their real Schur factors. Furthermore, it shows how the column approximate minimum degree (COLAMD) ordering algorithm can be used to reduce fill-in of the remaining diagonal blocks that are sparse LU factorized. Combining these ideas, the paper proposes three-level block successive over-relaxation (BSOR) as a competitive steady state solver for HMMs. Finally, on a set of numerical experiments it demonstrates how these ideas reduce storage required by the factors of the diagonal blocks and improve solution time compared to an all LU factorization implementation of the BSOR solver.

[1]  Patrice Moreaux,et al.  Asynchronous Composition of High Level Petri Nets: A Quantitative Approach , 1996, Application and Theory of Petri Nets.

[2]  Manuel Silva Suárez,et al.  Structured Solution of Asynchronously Communicating Stochastic Modules , 1999, IEEE Trans. Software Eng..

[3]  William J. Stewart,et al.  Numerical Solution of Markov Chains , 1993 .

[4]  Jane Hillston,et al.  An Efficient Kronecker Representation for PEPA Models , 2001, PAPM-PROBMIV.

[5]  Peter Buchholz,et al.  Complexity of Memory-Efficient Kronecker Operations with Applications to the Solution of Markov Models , 2000, INFORMS J. Comput..

[6]  C. Loan The ubiquitous Kronecker product , 2000 .

[7]  Brigitte Plateau,et al.  On the stochastic structure of parallelism and synchronization models for distributed algorithms , 1985, SIGMETRICS '85.

[8]  Timothy A. Davis,et al.  Algorithm 836: COLAMD, a column approximate minimum degree ordering algorithm , 2004, TOMS.

[9]  Peter Buchholz,et al.  A class of hierarchical queueing networks and their analysis , 1994, Queueing Syst. Theory Appl..

[10]  William J. Stewart,et al.  Introduction to the numerical solution of Markov Chains , 1994 .

[11]  Timothy A. Davis,et al.  A column approximate minimum degree ordering algorithm , 2000, TOMS.

[12]  Susanna Donatelli,et al.  Superposed Stochastic Automata: A Class of Stochastic Petri Nets with Parallel Solution and Distributed State Space , 1993, Perform. Evaluation.

[13]  Paulo Fernandes,et al.  Efficient descriptor-vector multiplications in stochastic automata networks , 1998, JACM.

[14]  Marco Ajmone Marsan,et al.  GSPN Models of Markovian Multiserver Multiqueue Systems , 1990, Perform. Evaluation.

[15]  D. Szyld,et al.  Block Two-stage Methods for Singular Systems and Markov Chains , 1996 .

[16]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[17]  Yao Li,et al.  Performance Petri net analysis of communications protocol software by delay-equivalent aggregation , 1991, Proceedings of the Fourth International Workshop on Petri Nets and Performance Models PNPM91.

[18]  Tugrul Dayar,et al.  Comparison of Partitioning Techniques for Two-Level Iterative Solvers on Large, Sparse Markov Chains , 1999, SIAM J. Sci. Comput..

[19]  Peter Buchholz,et al.  On generating a hierarchy for GSPN analysis , 1998, PERV.

[20]  Falko Bause,et al.  Quantitative Evaluation of Computing and Communication Systems , 1995, Lecture Notes in Computer Science.

[21]  Peter Buchholz,et al.  Hierarchical Structuring of Superposed GSPNs , 1999, IEEE Trans. Software Eng..

[22]  Peter Buchholz,et al.  Structured analysis approaches for large Markov chains , 1999 .

[23]  Peter Buchholz,et al.  A Toolbox for Functional and Quantitative Analysis of DEDS , 1998, Computer Performance Evaluation.

[24]  Tugrul Dayar,et al.  Iterative methods based on splittings for stochastic automata networks , 1998, Eur. J. Oper. Res..

[25]  Daniel B. Szyld,et al.  Block Two-stage Methods for Singular Systems and Markov Chains , 1996, Numer. Linear Algebra Appl..

[26]  Paulo Fernandes,et al.  Optimizing tensor product computations in stochastic automata networks , 1998 .

[27]  Gianfranco Ciardo,et al.  A data structure for the efficient Kronecker solution of GSPNs , 1999, Proceedings 8th International Workshop on Petri Nets and Performance Models (Cat. No.PR00331).

[28]  Jean-Michel Fourneau,et al.  Lumpable continuous-time stochastic automata networks , 2003, Eur. J. Oper. Res..

[29]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[30]  Brigitte Plateau,et al.  Stochastic Automata Network For Modeling Parallel Systems , 1991, IEEE Trans. Software Eng..

[31]  Jean-Michel Fourneau,et al.  A Methodology for Solving Markov Models of Parallel Systems , 1991, J. Parallel Distributed Comput..

[32]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[33]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[34]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[35]  Peter Kemper Numerical Analysis of Superposed GSPNs , 1996, IEEE Trans. Software Eng..