Marginalized adaptive particle filtering for nonlinear models with unknown time-varying noise parameters
暂无分享,去创建一个
Fredrik Gustafsson | Christian Lundquist | Václav Smídl | Emre Özkan | Saikat Saha | F. Gustafsson | V. Šmídl | C. Lundquist | Emre Özkan | S. Saha
[1] Joris De Schutter,et al. Adaptive Kalman filter for noise identification , 2000 .
[2] R. Mehra. Approaches to adaptive filtering , 1972 .
[3] R. Maine,et al. Formulation and implementation of a practical algorithm for parameter estimation with process and measurement noise , 1980 .
[4] Miroslav Kárný,et al. Optimized bayesian dynamic advising : theory and algorithms , 2006 .
[5] Y. Bar-Shalom,et al. A recursive multiple model approach to noise identification , 1994 .
[6] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[7] Adrian E. Raftery,et al. Prediction under Model Uncertainty Via Dynamic Model Averaging : Application to a Cold Rolling Mill 1 , 2008 .
[8] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[9] Fredrik Gustafsson,et al. Marginalized particle filters for Bayesian estimation of Gaussian noise parameters , 2010, 2010 13th International Conference on Information Fusion.
[10] Marcelo G. S. Bruno,et al. Bayesian blind equalization of time-varying frequency-selective channels subject to unknown variance noise , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.
[11] Arnaud Doucet,et al. A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..
[12] H. Jeffreys,et al. Theory of probability , 1896 .
[13] Edwin T. Jaynes,et al. Prior Probabilities , 1968, Encyclopedia of Machine Learning.
[14] R. Mehra. On the identification of variances and adaptive Kalman filtering , 1970 .
[15] Richard A. Tapia,et al. An Extension of the Karush-Kuhn-Tucker Necessity Conditions to Infinite Programming , 1994, SIAM Rev..
[16] A. Quinn,et al. Bayesian estimation of non-stationary AR model parameters via an unknown forgetting factor , 2004, 3rd IEEE Signal Processing Education Workshop. 2004 IEEE 11th Digital Signal Processing Workshop, 2004..
[17] Jacob Benesty,et al. A Robust Variable Forgetting Factor Recursive Least-Squares Algorithm for System Identification , 2008, IEEE Signal Processing Letters.
[18] Simo Särkkä,et al. Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations , 2009, IEEE Transactions on Automatic Control.
[19] Petar M. Djuric,et al. Sequential particle filtering in the presence of additive Gaussian noise with unknown parameters , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[20] M. Kárný,et al. Approximate Bayesian Recursive Estimation On Approximation Errors No . 2317 January 26 , 2012 , 2012 .
[21] Geir Storvik,et al. Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..
[22] Eleanor Jaynes,et al. Information Theory and Statistical Mechanics (Notes by the lecturer) , 1963 .
[23] Jean-Michel Marin,et al. On Particle Learning , 2010, 1006.0554.
[24] V. Peterka. BAYESIAN APPROACH TO SYSTEM IDENTIFICATION , 1981 .
[25] A. Doucet,et al. On-Line Parameter Estimation in General State-Space Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[26] Dan Simon,et al. Kalman Filtering with Uncertain Noise Covariances , 2004 .
[27] Thomas B. Schön,et al. Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.
[28] Quan Pan,et al. A finite-horizon adaptive Kalman filter for linear systems with unknown disturbances , 2004, Signal Process..
[29] B. Tapley,et al. Adaptive sequential estimation with unknown noise statistics , 1976 .
[30] Michael A. West,et al. Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.
[31] Fredrik Gustafsson,et al. Statistical Sensor Fusion , 2013 .
[32] R. Kulhavý,et al. On a general concept of forgetting , 1993 .
[33] Nicholas G. Polson,et al. Particle Learning and Smoothing , 2010, 1011.1098.