REKINDLE: Robust extraction of kurtosis INDices with linear estimation

Recent literature shows that diffusion tensor properties can be estimated more accurately with diffusion kurtosis imaging (DKI) than with diffusion tensor imaging (DTI). Furthermore, the additional non‐Gaussian diffusion features from DKI can be sensitive markers for tissue characterization. Despite these benefits, DKI is more susceptible to data artifacts than DTI due to its increased model complexity, higher acquisition demands, and longer scanning times. To increase the reliability of diffusion tensor and kurtosis estimates, we propose a robust estimation procedure for DKI.

[1]  A. Leemans,et al.  Acquisition Guidelines and Quality Assessment Tools for Analyzing Neonatal Diffusion Tensor MRI Data , 2013, American Journal of Neuroradiology.

[2]  Cheng Guan Koay,et al.  Least Squares Approaches to Diffusion Tensor Estimation , 2010 .

[3]  Dorothee P. Auer,et al.  A quantitative analysis of the benefits of cardiac gating in practical diffusion tensor imaging of the brain , 2010, Magnetic resonance in medicine.

[4]  D. Louis Collins,et al.  Robust Rician noise estimation for MR images , 2010, Medical Image Anal..

[5]  Jesper L. R. Andersson,et al.  Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: Why, how and but , 2008, NeuroImage.

[6]  D. Ruppert,et al.  Some new estimation methods for weighted regression where there are possible outliers , 1986 .

[7]  Jan Sijbers,et al.  Gliomas: diffusion kurtosis MR imaging in grading. , 2012, Radiology.

[8]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[9]  Pierrick Coupé,et al.  Author manuscript, published in "Journal of Magnetic Resonance Imaging 2010;31(1):192-203" DOI: 10.1002/jmri.22003 Adaptive Non-Local Means Denoising of MR Images with Spatially Varying Noise Levels , 2010 .

[10]  Brian Hansen,et al.  Experimentally and computationally fast method for estimation of a mean kurtosis , 2013, Magnetic resonance in medicine.

[11]  Paul L. Rosin,et al.  RESDORE : Robust Estimation in Spherical Deconvolution by Outlier Rejection , 2012 .

[12]  David Ruppert,et al.  Robust Estimation in Heteroscedastic Linear Models. , 1982 .

[13]  Carlo Pierpaoli,et al.  Probabilistic Identification and Estimation of Noise (piesno): a Self-consistent Approach and Its Applications in Mri , 2009 .

[14]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[15]  B. Jeurissen,et al.  Improved Sensitivity to Cerebral White Matter Abnormalities in Alzheimer’s Disease with Spherical Deconvolution Based Tractography , 2012, PloS one.

[16]  P. Bickel,et al.  Using Residuals Robustly I: Tests for Heteroscedasticity, Nonlinearity , 1975 .

[17]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .

[18]  J. Sijbers,et al.  Constrained maximum likelihood estimation of the diffusion kurtosis tensor using a Rician noise model , 2011, Magnetic resonance in medicine.

[19]  L. Lagae,et al.  Is there a common neuroanatomical substrate of language deficit between autism spectrum disorder and specific language impairment? , 2012, Cerebral cortex.

[20]  F. Dell’Acqua,et al.  Fronto-striatal circuitry and inhibitory control in autism: Findings from diffusion tensor imaging tractography , 2012, Cortex.

[21]  Derek K. Jones,et al.  RESTORE: Robust estimation of tensors by outlier rejection , 2005, Magnetic resonance in medicine.

[22]  S. P. Swinnen,et al.  White matter organization in relation to upper limb motor control in healthy subjects: exploring the added value of diffusion kurtosis imaging , 2013, Brain Structure and Function.

[23]  Jan Sijbers,et al.  Weighted linear least squares estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls , 2013, NeuroImage.

[24]  Jerry L Prince,et al.  Estimation and application of spatially variable noise fields in diffusion tensor imaging. , 2009, Magnetic resonance imaging.

[25]  A. Leemans,et al.  Diffusion tensor imaging of vascular parkinsonism: structural changes in cerebral white matter and the association with clinical severity. , 2012, Archives of neurology.

[26]  Derek K. Jones,et al.  “Squashing peanuts and smashing pumpkins”: How noise distorts diffusion‐weighted MR data , 2004, Magnetic resonance in medicine.

[27]  Carlo Pierpaoli,et al.  Informed RESTORE: A method for robust estimation of diffusion tensor from low redundancy datasets in the presence of physiological noise artifacts , 2012, Magnetic resonance in medicine.

[28]  S. Hekimoglu,et al.  Effectiveness of robust methods in heterogeneous linear models , 2003 .

[29]  E. Bullmore,et al.  Formal characterization and extension of the linearized diffusion tensor model , 2005, Human brain mapping.

[30]  Isabelle Bloch,et al.  Distortion correction and robust tensor estimation for MR diffusion imaging , 2002, Medical Image Anal..

[31]  Santiago Aja-Fernández,et al.  Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models. , 2009, Magnetic resonance imaging.

[32]  Robert V. Brill,et al.  Applied Statistics and Probability for Engineers , 2004, Technometrics.

[33]  Dongrong Xu,et al.  Automated artifact detection and removal for improved tensor estimation in motion-corrupted DTI data sets using the combination of local binary patterns and 2D partial least squares. , 2011, Magnetic resonance imaging.

[34]  P. Basser,et al.  A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging. , 2006, Journal of magnetic resonance.

[35]  Alexander Leemans,et al.  Variability in diffusion kurtosis imaging: Impact on study design, statistical power and interpretation , 2013, NeuroImage.

[36]  Kevin C. Chan,et al.  Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study , 2009, NeuroImage.

[37]  Alexander Leemans,et al.  The B‐matrix must be rotated when correcting for subject motion in DTI data , 2009, Magnetic resonance in medicine.

[38]  Jan Sijbers,et al.  ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data , 2009 .

[39]  D. Ruppert,et al.  A Note on Computing Robust Regression Estimates via Iteratively Reweighted Least Squares , 1988 .

[40]  Marcel P. Zwiers,et al.  Patching cardiac and head motion artefacts in diffusion-weighted images , 2010, NeuroImage.

[41]  Eric Achten,et al.  Optimal Experimental Design for Diffusion Kurtosis Imaging , 2010, IEEE Transactions on Medical Imaging.

[42]  Stephen E. Rose,et al.  HOMOR: Higher Order Model Outlier Rejection for high b-value MR diffusion data , 2012, NeuroImage.

[43]  R. Henkelman Measurement of signal intensities in the presence of noise in MR images. , 1985, Medical physics.

[44]  J. Sijbers,et al.  More accurate estimation of diffusion tensor parameters using diffusion kurtosis imaging , 2011, Magnetic resonance in medicine.

[45]  Nadim Joni Shah,et al.  Spatially variable Rician noise in magnetic resonance imaging , 2012, Medical Image Anal..

[46]  Azriel Rosenfeld,et al.  Robust regression methods for computer vision: A review , 1991, International Journal of Computer Vision.

[47]  Mara Cercignani,et al.  Twenty‐five pitfalls in the analysis of diffusion MRI data , 2010, NMR in biomedicine.

[48]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[49]  R. Hogg Statistical Robustness: One View of its use in Applications Today , 1979 .

[50]  D. Morris,et al.  Reduced fractional anisotropy in the uncinate fasciculus in patients with major depression carrying the met‐allele of the Val66Met brain‐derived neurotrophic factor genotype , 2012, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[51]  J. Helpern,et al.  Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[52]  Ragini Verma,et al.  Effects of physiological noise in population analysis of diffusion tensor MRI data , 2011, NeuroImage.

[53]  A. Leemans,et al.  Comprehensive framework for accurate diffusion MRI parameter estimation , 2013, Magnetic resonance in medicine.

[54]  J Sijbers,et al.  Estimation of the noise in magnitude MR images. , 1998, Magnetic resonance imaging.

[55]  J. Sijbers,et al.  Automatic estimation of the noise variance from the histogram of a magnetic resonance image , 2007, Physics in medicine and biology.

[56]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[57]  S. Aja‐Fernández,et al.  Influence of noise correlation in multiple‐coil statistical models with sum of squares reconstruction , 2012, Magnetic resonance in medicine.

[58]  Cheng Guan Koay,et al.  Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. , 2006, Journal of magnetic resonance.

[59]  B. Ardekani,et al.  Estimation of tensors and tensor‐derived measures in diffusional kurtosis imaging , 2011, Magnetic resonance in medicine.