Factoring and Solving Linear Partial Differential Equations

The problem of factoring a linear partial differential operator is studied. An algorithm is designed which allows one to factor an operator when its symbol is separable, and if in addition the operator has enough right factors then it is completely reducible. Since finding the space of solutions of a completely reducible operator reduces to the same for its right factors, we apply this approach and execute a complete analysis of factoring and solving a second-order operator in two independent variables. Some results on factoring third-order operators are exhibited.

[1]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[2]  J. T. Stafford Module Structure of Weyl Algebras , 1978 .

[3]  Ziming Li,et al.  Factoring systems of linear PDEs with finite-dimensional solution spaces , 2003, J. Symb. Comput..

[4]  William Y. Sit Typical differential dimension of the intersection of linear differential algebraic groups , 1974 .

[5]  Fritz Schwarz,et al.  A factorization algorithm for linear ordinary differential equations , 1989, ISSAC '89.

[6]  E. R. Kolchin,et al.  Differential algebraic groups , 1986 .

[7]  Dima Grigoriev,et al.  Complexity of Factoring and Calculating the GCD of Linear Ordinary Differential Operators , 1990, J. Symb. Comput..

[8]  É. Goursat,et al.  Leçons sur l'integration des équations aux dérivées partielles du premier ordre , 1921 .

[9]  Henry Blumberg,et al.  Über algebraische Eigenschaften von linearen homogenen Differentialausdrücken , 1912 .

[10]  Dimitri Yu. Grigor’ev Complexity of Solving Systems of Linear Equations over the Rings of Differential Operators , 1991 .

[11]  Erich Kaltofen,et al.  Factorization of Polynomials , 1983 .

[12]  D. Grigor'ev,et al.  Complexity of factoring and calculating the GCD of linear ordinary differential operators , 1990 .

[13]  Sergey P. Tsarev,et al.  Factoring linear partial differential operators and the Darboux method for integrating nonlinear partial differential equations , 2000 .

[14]  Ludwig Schlesinger,et al.  Handbuch der Theorie der linearen Differentialgleichungen , 1898 .

[15]  E. Kamke Differentialgleichungen : Lösungsmethoden und Lösungen , 1977 .

[16]  Alfred Loewy,et al.  Über vollständig reduzible lineare homogene Differentialgleichungen , 1906 .