Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation

The problem of the fetal electrocardiogram (FECG) extraction from maternal skin electrode measurements can be modeled from the perspective of blind source separation (BSS). Since no comparison between BSS techniques and other signal processing methods has been made, the authors compare a BSS procedure based on higher-order statistics and Widrow's multireference adaptive noise cancelling approach. As a best-case scenario for this latter method, optimal Wiener-Hopf solutions are considered. Both procedures are applied to real multichannel ECG recordings obtained from a pregnant woman. The experimental outcomes demonstrate the more robust performance of the blind technique and, in turn, verify the validity of the BSS model in this important biomedical application.

[1]  Simon Haykin,et al.  Adaptive filter theory (2nd ed.) , 1991 .

[2]  V. Zarzoso,et al.  Comparison between blind separation and adaptive noise cancellation tecmiuques for fetal electrocardiogram extraction , 1999 .

[3]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[4]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[5]  Joos Vandewalle,et al.  Fetal electrocardiogram extraction by blind source subspace separation , 2000, IEEE Transactions on Biomedical Engineering.

[6]  Joos Vandewalle,et al.  Two Methods for Optimal MECG Elimination and FECG Detection from Skin Electrode Signals , 1987, IEEE Transactions on Biomedical Engineering.

[7]  L. Lathauwer,et al.  Blind source separation by higher-order singular value decomposition , 1994 .

[8]  J. Millet-Roig,et al.  Fetal ECG extraction from maternal skin electrodes using blind source separation and adaptive noise cancellation techniques , 2000, Computers in Cardiology 2000. Vol.27 (Cat. 00CH37163).

[9]  Jean-François Cardoso,et al.  Multidimensional independent component analysis , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[10]  E Bacharakis,et al.  Maternal and foetal ECG separation using blind source separation methods. , 1997, IMA journal of mathematics applied in medicine and biology.

[11]  Bernard Widrow,et al.  Adaptive Signal Processing , 1985 .

[12]  L. Lathauwer,et al.  Fetal electrocardiogram extraction by source subspace separation , 1995 .

[13]  George-Othon Glentis,et al.  Efficient least squares adaptive algorithms for FIR transversal filtering , 1999, IEEE Signal Process. Mag..

[14]  B. Widrow,et al.  Adaptive noise cancelling: Principles and applications , 1975 .

[15]  Asoke K. Nandi,et al.  Foetal ECG extraction using blind source separation methods , 1996, 1996 8th European Signal Processing Conference (EUSIPCO 1996).

[16]  Asoke K. Nandi,et al.  Blind separation of independent sources for virtually any source probability density function , 1999, IEEE Trans. Signal Process..

[17]  Asoke K. Nandi,et al.  Blind Source Separation , 1999 .

[18]  Asoke K. Nandi,et al.  Adaptive blind source separation for virtually any source probability density function , 2000, IEEE Trans. Signal Process..

[19]  Robert Plonsey,et al.  Bioelectricity: A Quantitative Approach Duke University’s First MOOC , 2013 .

[20]  Bart De Schutter,et al.  DAISY : A database for identification of systems , 1997 .

[21]  Asoke K. Nandi,et al.  Foetal ECG separation , 1997 .

[22]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..