Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data

Abstract Considerable recent interest has focused on doubly robust estimators for a population mean response in the presence of incomplete data, which involve models for both the propensity score and the regression of outcome on covariates. The usual doubly robust estimator may yield severely biased inferences if neither of these models is correctly specified and can exhibit nonnegligible bias if the estimated propensity score is close to zero for some observations. We propose alternative doubly robust estimators that achieve comparable or improved performance relative to existing methods, even with some estimated propensity scores close to zero.

[1]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[2]  Donald B. Rubin,et al.  Bayesian Inference for Causal Effects: The Role of Randomization , 1978 .

[3]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[4]  D. Rubin,et al.  Reducing Bias in Observational Studies Using Subclassification on the Propensity Score , 1984 .

[5]  P. Rosenbaum Model-Based Direct Adjustment , 1987 .

[6]  J. Robins,et al.  Estimation of Regression Coefficients When Some Regressors are not Always Observed , 1994 .

[7]  D B Rubin,et al.  Matching using estimated propensity scores: relating theory to practice. , 1996, Biometrics.

[8]  J. Robins,et al.  Adjusting for Nonignorable Drop-Out Using Semiparametric Nonresponse Models , 1999 .

[9]  J. Robins,et al.  Marginal Structural Models and Causal Inference in Epidemiology , 2000, Epidemiology.

[10]  L. Stefanski,et al.  The Calculus of M-Estimation , 2002 .

[11]  J. Lunceford,et al.  Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study , 2004, Statistics in medicine.

[12]  J. Robins,et al.  Doubly Robust Estimation in Missing Data and Causal Inference Models , 2005, Biometrics.

[13]  A. Tsiatis Semiparametric Theory and Missing Data , 2006 .

[14]  Joseph Kang,et al.  Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data , 2007, 0804.2958.

[15]  Zhiqiang Tan,et al.  A Distributional Approach for Causal Inference Using Propensity Scores , 2006 .

[16]  Marie Davidian,et al.  Comment: Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data. , 2008, Statistical science : a review journal of the Institute of Mathematical Statistics.

[17]  J. Robins,et al.  Comment: Performance of Double-Robust Estimators When “Inverse Probability” Weights Are Highly Variable , 2007, 0804.2965.

[18]  Zhiqiang Tan,et al.  Comment: Understanding OR, PS and DR , 2007, 0804.2969.

[19]  Daniel F. McCaffrey,et al.  Comment: Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data , 2008, 0804.2962.

[20]  Yue Wang,et al.  A cross-validation deletion-substitution-addition model selection algorithm: Application to marginal structural models , 2010, Comput. Stat. Data Anal..