First-Order Orbit Queries

Orbit Problems are a class of fundamental reachability questions that arise in the analysis of discrete-time linear dynamical systems such as automata, Markov chains, recurrence sequences, and linear while loops. Instances of the problem comprise a dimension d∈ℕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d\in \mathbb {N}$\end{document}, a square matrix A∈ℚd×d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\in \mathbb {Q}^{d\times d}$\end{document}, and a query regarding the behaviour of some sets under repeated applications of A. For instance, in the Semialgebraic Orbit Problem, we are given semialgebraic source and target sets S,T⊆ℝd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S,T\subseteq \mathbb {R}^{d}$\end{document}, and the query is whether there exists n∈ℕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\in {\mathbb {N}}$\end{document} and x ∈ S such that Anx ∈ T. The main contribution of this paper is to introduce a unifying formalism for a vast class of orbit problems, and show that this formalism is decidable for dimension d ≤ 3. Intuitively, our formalism allows one to reason about any first-order query whose atomic propositions are a membership queries of orbit elements in semialgebraic sets. Our decision procedure relies on separation bounds for algebraic numbers as well as a classical result of transcendental number theory—Baker’s theorem on linear forms in logarithms of algebraic numbers. We moreover argue that our main result represents a natural limit to what can be decided (with respect to reachability) about the orbit of a single matrix. On the one hand, semialgebraic sets are arguably the largest general class of subsets of ℝd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}^{d}$\end{document} for which membership is decidable. On the other hand, previous work has shown that in dimension d = 4, giving a decision procedure for the special case of the Orbit Problem with singleton source set S and polytope target set T would entail major breakthroughs in Diophantine approximation.

[1]  Michael A. Harrison,et al.  Lectures on linear sequential machines , 1969 .

[2]  James Renegar,et al.  A faster PSPACE algorithm for deciding the existential theory of the reals , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[3]  Richard J. Lipton,et al.  The orbit problem is decidable , 1980, STOC '80.

[4]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[5]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[6]  M. Mignotte Some Useful Bounds , 1983 .

[7]  Gerardo Lafferriere,et al.  Symbolic Reachability Computation for Families of Linear Vector Fields , 2001, J. Symb. Comput..

[8]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[9]  Markus Müller-Olm,et al.  Computing polynomial program invariants , 2004, Inf. Process. Lett..

[10]  V. Pan Optimal and nearly optimal algorithms for approximating polynomial zeros , 1996 .

[11]  Terence Tao,et al.  Structure and randomness , 2008 .

[12]  N. Vereshchagin Occurrence of zero in a linear recursive sequence , 1985 .

[13]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[14]  Joël Ouaknine,et al.  On the Complexity of the Orbit Problem , 2013, J. ACM.

[15]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[16]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[17]  Between Decidability Skolem's Problem - On the Border , 2005 .

[18]  Joël Ouaknine,et al.  The Semialgebraic Orbit Problem , 2019, STACS.

[19]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[20]  Gisbert Wüstholz,et al.  Logarithmic forms and group varieties. , 1993 .

[21]  T. Shorey,et al.  The distance between terms of an algebraic recurrence sequence. , 1984 .

[22]  Richard J. Lipton,et al.  Polynomial-time algorithm for the orbit problem , 1986, JACM.

[23]  Joël Ouaknine,et al.  The Polytope-Collision Problem , 2017, ICALP.

[24]  James Renegar On the computational complexity and geome-try of the first-order theory of the reals , 1992 .

[25]  Joël Ouaknine,et al.  Ultimate Positivity is Decidable for Simple Linear Recurrence Sequences , 2013, ICALP.

[26]  Joël Ouaknine,et al.  The Polyhedron-Hitting Problem , 2014, SODA.